‘ " NS, ‘_{;1 = o 2
" N
¥ 5 - .
../ \

Background and System Description * 03/2017

Programming Guideline for
S7-1200/S7-1500

STEP 7 and STEP 7 Safety in TIA Portal

http://[www.siemens.com/simatic-programming-quideline

http://www.siemens.com/simatic-programming-guideline

© Siemens AG 2017 All rights reserved

Warranty and Liability

Warranty and Liability

Note

Security
informa-
tion

The Application Examples are not binding and do not claim to be complete
regarding the circuits shown, equipping and any eventuality. The Application
Examples do not represent customer-specific solutions. They are only intended
to provide support for typical applications. You are responsible for ensuring that
the described products are used correctly. These Application Examples do not
relieve you of the responsibility to use safe practices in application, installation,
operation and maintenance. When using these Application Examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
Application Examples at any time without prior notice.

If there are any deviations between the recommendations provided in these
Application Examples and other Siemens publications — e.g. Catalogs - the
contents of the other documents have priority.

We do not accept any liability for the information contained in this document.

Any claims against us — based on whatever legal reason — resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this Application Example shall be excluded. Such an exclusion shall
not apply in the case of mandatory liability, e.g. under the German Product Liability
Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,
body or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The damages for a breach of a substantial
contractual obligation are, however, limited to the foreseeable damage, typical for
the type of contract, except in the event of intent or gross negligence or injury to
life, body or health. The above provisions do not imply a change of the burden of
proof to your detriment.

Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of the Siemens AG.

Siemens provides products and solutions with industrial security functions that
support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber
threats, it is necessary to implement — and continuously maintain — a holistic,
state-of-the-art industrial security concept. Siemens’ products and solutions only
form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems,
machines and networks. Systems, machines and components should only be
connected to the enterprise network or the internet if and to the extent necessary
and with appropriate security measures (e.g. use of firewalls and network
segmentation) in place.

Additionally, Siemens’ guidance on appropriate security measures should be
taken into account. For more information about industrial security, please visit
http://www.siemens.com/industrialsecurity.

Siemens’ products and solutions undergo continuous development to make them
more secure. Siemens strongly recommends to apply product updates as soon
as available and to always use the latest product versions. Use of product
versions that are no longer supported, and failure to apply latest updates may
increase customer’s exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial
Security RSS Feed under http://www.siemens.com/industrialsecurity.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 2

http://www.siemens.com/industrialsecurity
http://www.siemens.com/industrialsecurity
http://www.siemens.com/industrialsecurity

© Siemens AG 2017 All rights reserved

Table of Contents

Table of Contents

Warranty and Liabilityooccieeiiiiii e 2
1 PrEACE ... i 6
2 S7-1200/S7-1500 iINNOVALIONS ..eiieiiiiiiiiiiiiie et e e eee e e 8
21 INEFOAUCTIONeeiiei e 8
2.2 TOIMS Lo 8
2.3 Programming lanQUAagEScccuvvveeiieeeieiiiiieeeee e e e 11
2.4 Optimized Maching COUE........ouveiiiiiiiiiii e 11
25 BIOCK CrEALIONeeiiiee et 12
2.6 OptiMized DIOCKScooeiiiiii e 13
26.1 S7-1200: Structure of optimized bIOCKScoovviiiiiiniiiieieeee, 13
26.2 S7-1500: Structure of optimized BIOCKScoovviiiiiiniiieieeee, 14
2.6.3 Processor-optimized data storage for S7-1500cccoccvveeerineeeennns 15
264 Conversion between optimized and non-optimized tags 18
2.6.5 Parameter transfer between blocks with optimized and non-
(0] 01 141 4=To = T o3 =T PPNt 19
2.6.6 Communication with optimized dataceevvviiiieiviieeiiiiiiieieneininnns 20
2.7 BIOCK Properties. ... 21
271 BIOCK SIZES ... 21
2.7.2 Number of organization blocks (OB)..........ccccceeiiii 21
2.7.3 Block interface — hide block parameters (V14 or higher).................. 22
2.8 New data types for S7-1200/1500..........ccceeerrireeeeiiiieeeiiieeeesnireeeeens 23
28.1 Elementary data types........cooiiiiiiiiiiiiee e 23
28.2 Data type Date_TimMe_LONGcueveiiiiieiiiiiiee et 24
2.8.3 Other time data tYPESoveiieiiie ittt 24
284 UNICOAE data tYPES.....eveiieiiiiiie ettt 25
285 Data type VARIANT (S7-1500 and S7-1200 from FW4.1)................. 26
29 INSTIUCTIONS .ttt ee e e 29
291 MOVE INSTIUCTHIONS.....eeeiiitieee ettt e e 29
29.2 VARIANT instructions (S7-1500 and S7-1200 FW4.1 and
RIGNED) oo 31
293 RUNTIME ..ottt 32
294 Comparison of tags from PLC data types (V14 or higher)................. 33
295 Multiple assignment (V14 or higher) ... 34
2.10 Symbolic and COMMENTSeiiiiiiiiei e 35
2.10.1 Programming €aItOrc.ueieiiiiieeiiiiie ettt 35
2.10.2 Commentlines in watch tablesccccccceveiiiiici e, 36
211 SYSIEM CONSTANTS ...eeviiiieiiiieie e 37
2.12 USEI CONSTANTS ..oeiiiiiiiiiiiieiii et 38
2.13 Internal reference ID for controller and HMI tags................cooooooee. 39
2.14 STOP mode in the event of EITOrScccceiviiie i 41
3 General Programming ...t 42
3.1 Operating system and USEr Program..............eeeeeeeeererererersserememmrmmmmnne. 42
3.2 Program DIOCKSuuiiiiiiiiie e 42
3.21 Organization BIOCKS (OB)eveiiiiiiiiiiiiie e 43
3.2.2 FUNCHONS (FC).utiiiiiiiiiie ittt et e e 45
3.2.3 FUNCtion BIOCKS (FB) ..ccoiiiiieiiiiiieie e a7
3.24 INSTANCES ...t e e s 48
3.25 MUIISINSTANCES .oeoeieeeeee et r e e e e 49
3.2.6 Transferring instance as parameters (V14)......occoovoeeeiiiiiiiiieeneneenn. 51
3.2.7 Global data blOCKS (DB)eeiiiiiiiiiiiiiiiee e 52
3.2.8 Downloading without reinitialisationccccceeviiiiiiiie e, 53
3.2.9 Reusability Of DIOCKS........coooiiii e, 57
3.2.10 Auto numbering of BIOCKS.........coiiiiiiiii e 58

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017 3

Table of Contents

© Siemens AG 2017 All rights reserved

3.3 BlOCK INtEIfACE tYPES ...vvveereeei ittt e 59
3.3.1 Call-bBy-ValU@veeieeee e 59
3.3.2 Call-DY-TEfEIrENCE ...ceii e 59
3.3.3 Overview for transfer of parameters..........cccoccvvvieeeee e 60
34 MEMOIY CONCEPL ...ttt e 60
34.1 Block interfaces as data eXChangecccccviveeeiiiiiee e 60
3.4.2 GlODAl MEMOIY ... 61
3.4.3 LOCAI MEMIOIY ...ttt e e 62
3.4.4 Access speed Of MEMOIY Ar€as..........ccovieieeiiiieee e 63
3.5 RETENTIVILY ..ottt 64
3.6 Symbolic addreSSiNgccoiiiiiiiiiiiiie e 67
3.6.1 Symbolic instead of absolute addressing........cccccceeeeiiiiiiiieeeee e, 67
3.6.2 ARRAY data type and indirect field accesses........ccccccceevviiivvinennnnnn. 69
3.6.3 Formal parameter Array [*] (V14 or high€r)......ccccoovviiiveneee i, 71
3.6.4 STRUCT data type and PLC data typesccccvvveeeeeiiiiciinneeee e 72
3.6.5 Access to /O areas with PLC data typesS..........cccvvvveeeeeeeviiciviieeeeneenn, 75
3.6.6 SHICE BCCESS ..veiiiiiiiiie ittt e 76
3.6.7 SCL networks in LAD and FBD (V14 and higher)cccccoovieeenne. 77
3.7] o] = U= PRSP 78
3.7.1 Types of libraries and library elementscccccooieeeiniieiiniiee e, 79
3.7.2 TYPE CONCEPL ... s 80
3.7.3 Differences between the typifiable objects for CPU and HMI 81
3.74 Versioning of @ BIOCK ... 81
3.8 Increased performance for hardware interrupts.............ccccoeeeeeeeee. 86
3.9 Additional performance recommendations............ccccceeeveiiiiiiiiieieeeennn 88
3.10 SCL programming language: Tips and TricKS............uvvvevvvevivivenennnnnn. 89
3.10.1 Using call templates ... 89
3.10.2 What instruction parameters are mandatory?cccoeeeeeeiiireeeneeeennn. 90
3.10.3 Drag-and-drop with entire tag NaMEeS..........c.ccoveeiriieeeiniiiee e 90
3.10.4 Structuring with the keyword REGION (V14 or higher).........cc.cccc...... 91
3.10.5 Correct use of FOR, REPEAT and WHILE 100PScccceevviiierennnnne. 92
3.10.6 Using CASE instruction efficientlycccooiiinine e, 93
3.10.7 No manipulation of loop counters for FOR 100p.......cccccvveeiiiiieeennnnne. 93
3.10.8 FOR 100P DACKWAITS.......ccciiiiiiieiiiiee ittt 94
3.10.9 Easy creation of instances for callS..........ccccoeeveiiiiiiiiiiiiiiiccccecccceee, 94
3.10.10 Handling Of tiMe tagS........uuuuuuu s 94
3.10.11 Unnecessary IF iNStrUCION...........uuuuii e 96
4 Hardware-Independent Programmingcccoouueieiiiieneiniiee e 97
4.1 Data types of S7-300/400 and S7-1200/1500...........ccccvvueeinineerueennnn 97
4.2 No bit memory but global data bloCKS ..., 99
4.3 Programming of "Cycle DitS"...........ooiiiiiiiii e 99
5 STEP 7 Safety in the TIA Portal ... 100
51 T 0o 11 Tox 1o o 1 100
5.2 BT 1. TSP PP UPPPPRPTTN 101
5.3 Components of the safety program.........cccococeeviiiiiiiiic e, 102
5.4 F-rUNTIME QrOUP ..o 103
55 F SIQNALUIE ..o 103
5.6 Assigning the PROFIsafe address at the F-1/O...........cccccoeoviiiinneen. 105
5.7 Evaluation of F-1/Oooiiiiii e 105
5.8 Value status (S7-1200F/1500F)cccoeerieeeniieiiieeniee e 106
5.9 DAt LYPES ..o 107
5.9.1 OVEBIVIBW...cei i ittt ettt e e e e e e e e e e s et e e e e e e s e nsnrnneneaeeean 107
5.9.2 IMPIICIt CONVEISIONeeiiiiiiiii e 107
5.10 F-conform PLC data typecoovveieiiiiiiieiiiiee e 109
511 TRUE /T FALSE ...ttt see e e 111
5.12 Optimizing the compilation and program runtimeccceeeeee. 112

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 4

© Siemens AG 2017 All rights reserved

Table of Contents

5.12.1 Avoiding of time-processing blocks: TP, TON, TOFcccccceeeennn. 113
5.12.2 Avoiding deep call hierarchi€sccccccvvveeiiiiciiiiieee e 113
5.12.3 Avoiding JIMP/Label StruCtUreS..........cccviiviiee i 113
5.13 Data exchange between standard program and F program 114
5.14 Testing the safety program..........ccccceevevciiiieeee e 115
5.15 STOP mode in the event Of F €rrorsccccoevviiiiieeiiieeeiiieeeeeen 116
5.16 Migration of safety programs............ccveiiiiiieiniieee e 116
5.17 General recommendations for safetycccccvviiiiiiiciniieece, 116
6 The Most Important RecommendationsSocccvvvieeeeees e 117
7 LiNKS & LItEratUre ..oooveiie ittt 118
8 [1S (0 TSR 119

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017 5

1 Preface

Copyright © Siemens AG 2017 All rights reserved

1 Preface

Objective for the development of the new SIMATIC controller generation

e An engineering framework for all automation components (controller, HMI,
drives, etc.)

e Uniform programming

e Increased performance

e Complete set of command for every language
e Fully symbolic program generation

e Data handling also without pointer

e Reusability of created blocks

Objective of the guideline

The new controller generation SIMATIC S7-1200 and S7-1500 has an up-to-date
system architecture, and together with the TIA Portal offers new and efficient
options of programming and configuration. It is no longer the resources of the
controller (e.g. data storage in the memory) that are paramount but the actual
automation solution itself.

This document gives you many recommendations and notes on optimal
programming of S7-1200/1500 controllers. Some differences in the system
architecture of the S7-300/400, as well as the thus connected new programming
options are explained in an easy to understand way. This helps you to create
standardized and optimal programming of your automation solutions.

The examples described can be universally used for the controllers S7-1200 and
S7-1500.

Core contents of this programming guideline
The following key issues on the TIA Portal are dealt with in this document:
e S7-1200/1500 innovations
- Programming languages
- Optimized blocks
- Data types and instructions
e Recommendations on general programming
Operating system and user program
- Memory concept

Symbolic addressing

Libraries

¢ Recommendations on hardware-independent programming
e Recommendations on STEP 7 Safety in TIA Portal

e Overview of the most important recommendations

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

Copyright © Siemens AG 2017 All rights reserved

1 Preface

Advantages and benefits

Numerous advantages result from applying these recommendations and tips:
e Powerful user program

e Clear program structures

e Intuitive and effective programming solutions

Further information

When programming SIMATIC controllers, the task of the programmer is to create
as clear and readable a user program as possible. Each user uses their own
strategy, for example, how to hame tags or blocks or the way of commenting. The
different philosophies of the programmers create very different user programs that
can only be interpreted by the respective programmer.

The programming style guide offers you coordinated set of rules for consistent
programming. These specifications for example describe a uniform assignment of
tags and block names right up to clear programming in SCL.

You can use these rules and recommendations freely; they serve as a suggestion
(not a standard in programming) for consistent programming.

Note The programming style guide for S7-1200 and S7-1500 can be found at the
following link:

https://support.industry.siemens.com/cs/ww/en/view/81318674

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 7

https://support.industry.siemens.com/cs/ww/en/view/81318674

2 S7-1200/S7-1500 innovations

Copyright © Siemens AG 2017 All rights reserved

2.1 Introduction

2 S7-1200/S7-1500 innovations

2.1 Introduction

In general, the programming of the SIMATIC controllers from S7-300/400 to S7-
1500 has stayed the same. There are the known programming languages such as
LAD, FBD, STL, SCL or graph and blocks such as organization blocks (OBs),
function blocks (FBs), functions (FCs) or data blocks (DBs). S7-300/400 programs
created can be easily implemented on S7-1500 and existing LAD, FBD and SCL
programs can be easily implemented on S7-1200 controllers.

In addition, there are many innovations that facilitate programming for you and
enables powerful and memory-saving code.

For programs that are implemented for S7-1200/1500 controllers, we recommend
not to implement them one-to-one, but also to check new options and if possible, to
use them. The extra effort is often limited and you will receive a program code that
is, for example,

e optimal for memory and runtime for the new CPUs,
e easier to understand,
e and easier to maintain.

Note Information for the migration of S7-300/S7-400 to S7-1500 can be found in the
following entry:

https://support.industry.siemens.com/cs/ww/en/view/109478811

2.2 Terms

General terms in the TIA Portal

Some terms have change to enable easier handling with the TIA Portal.

Figure 2-1: New terms in the TIA Portal

STEP 7 V5.x STEP 7 (TIA Portal)
@ Symbol table @ PLCtags
{3} uDT |:> E] PLC data types
N Tag table SZ Watch table

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 8

https://support.industry.siemens.com/cs/ww/en/view/109478811

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.2 Terms

Terms for tags and parameters

When dealing with tags, functions, and function blocks, many terms are repeatedly
used differently or even incorrectly. The following figure clarifies these terms.

Figure 2-2: Terms for tags and parameters

Globaler DB FC/FB
wcz
MainOBGlobal MoveVariant”
Hame Data type | Startvalue o v
1 4@ ~ Static
5| stathoveVariantEnable fint i 15 o
“MainDBGlobal®. “MainDBGlobal®.
g statinputing L statinputint —jnVariant Ret_Valf— statError
L statOutputint nt
5 40 s statinputReal eal wvsinogcilbar]’\5|a_ oeclobal
vainl al . vz 1inl obal .
6 <1 s statOutputReal Real statOuty, & outhyType outinteger|— StatOutputint
7 < =) » statnputhyType ‘WyType”
& 40 =| » statOutputhyType " MyType” 0o .
o 4ms| statinputBool Bool outReaI—Sz\:a‘g‘i‘;S‘t:::: :
10 <1 v statError nt
Table 2-1: Terms for Tags and parameters
Term Description
1. Tags Tags are labeled by a name/identifier and use an
address in the memory of the controller. Tags are always
defined with a certain data type (Bool, Integer, etc.):
e PLCtags
e Individual tags in data blocks
e Complete data blocks
2. Tag value Tag values are values stored in a tag (for example, 15 as
value of an integer tag).
3. Actual parameter Actual parameters are tags interconnected at the
interfaces of instructions, functions, and function blocks.
4. Formal parameters Formal parameters are the interface parameters of
(transfer parameter, instructions, functions, and function blocks (Input,
block parameter) Output, InOut, and Ret_Val).

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.2 Terms

Note

More information can be found in the following entries:

What entries are available on the internet for the migration to STEP 7 (TIA
Portal) and WinCC (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/56314851

What system requirements have to be fulfilled to migrate a STEP 7 V5.x project
in STEP 7 Professional (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/62100731

PLC migration to S7-1500 with STEP 7 (TIA Portal)
https://support.industry.siemens.com/cs/ww/en/view/67858106

How can you program efficiently and performant in STEP 7 (TIA Portal) for S7-
1200/S7-1500?
https://support.industry.siemens.com/cs/ww/en/view/67582299

Why is it not possible to mix register passing and explicit parameter transfer with
the S7-1500 in STEP 7 (TIA Portal)?

Among other topics, the migration of STL programs to S7-1500 is described in
this entry.

https://support.industry.siemens.com/cs/ww/en/view/67655405

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 10

https://support.industry.siemens.com/cs/ww/en/view/56314851
https://support.industry.siemens.com/cs/ww/en/view/62100731
https://support.industry.siemens.com/cs/ww/en/view/67858106
https://support.industry.siemens.com/cs/ww/en/view/67582299
https://support.industry.siemens.com/cs/ww/en/view/67655405

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.3 Programming languages

2.3 Programming languages

Different programming languages are available for the programming of a user
program. Each language has its own advantages that can be used flexibly
depending on application. Thus, each block in the user program can be created in
any programming language.

Table 2-2: Programming languages

Programming language S7-1200 S7-1500
Ladder diagram (LAD) yes yes
Function block diagram (FBD) yes yes
Structured Control Language (SCL) yes yes
Graph no yes
Statement list (STL) no yes
Note More information can be found in the following entries:

SIMATIC S7-1200 / S7-1500 Comparison List for Programming Languages
Based on the International Mnemonics
https://support.industry.siemens.com/cs/ww/en/view/86630375

What should you watch out for when migrating an S7-SCL program in STEP 7
(TIA Portal)?

https://support.industry.siemens.com/cs/ww/en/view/59784005

Which instructions can you not use in an SCL program in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/58002709

How do you define the constants in an S7-SCL program in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/52258437

2.4 Optimized machine code

TIA Portal and S7-1200/1500 enable an optimized runtime performance in every
programming language. All languages are compiled directly in machine code in the
same way.

Advantages

e All programming languages have the same level of performance (for the same
access types)

¢ No reduction of performance through additional compilation with interim step
via STL
Properties

In the following figure, the difference in the compilation of S7-programs in machine
code is displayed.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 11

https://support.industry.siemens.com/cs/ww/en/view/86630375
https://support.industry.siemens.com/cs/ww/en/view/59784005
https://support.industry.siemens.com/cs/ww/en/view/58002709
https://support.industry.siemens.com/cs/ww/en/view/52258437

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.5 Block creation

Figure 2-3: Machine code creation with S7-300/400/WinAC and S7-1200/1500

$7-300/400/WinAC I.P $7-1200/1500 |g= %

i)\\\ SCL LAD LAD
b FBD SCL b EBD STL
(only S7-1500)

g\
U E 0.0
A2 sTL
Maschine code Maschine code
$7-300/400/WinAC $7-1200/1500

e For S7-300/400/WinAC controllers LAD and FBD programs are first compiled
in STL before machine code is created.

e For S7-1200/1500 controllers all programming languages are directly compiled
in machine code.

2.5 Block creation

All blocks such as OBs, FBs and FCs can be directly programmed in the desired
programming language. Therefore no source has to be created for SCL
programming. Only select the block and SCL as programming language. You can
then program the block directly.

Figure 2-4: Dialog “Add new Block”

Add new block 3

Name:
|Block_1 |

Language: sl

Number:
OB FBD

=, R
FB ’

Function blocks. ode blocks that store their vi s permanentlyin instance data blocks,
Function block e e e R A e bemn rined

mare__.

> |Additiona| information

et

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 12

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

2.6 Optimized blocks

S7-1200/1500 controllers have an optimized data storage. In optimized blocks all
tags are automatically sorted according to their data type. The sorting ensures that
data gaps between the tags are reduced to a minimum and that the tags are stored
access-optimized for the processor.

Non-optimized blocks are only available for compatibility reasons in S7-1200/1500
controllers.

Advantages

e Access always takes place as quickly as possible since the data storage is
optimized by the system and independent of the declaration.

¢ No danger of inconsistencies due to faulty, absolute access, since access is
generally symbolic

¢ Declaration changes do not lead to access errors since, for example, HMI
access is symbolic.

¢ Individual tags can be specifically defined as retentive.

e No settings required in the instance data block. Everything is set in the
assigned FB (for example, retentivity).

e Storage reserves in the data block enables changes without loss of current
values (see chapter 3.2.8 Downloading without reinitialisation).

2.6.1 S7-1200: Structure of optimized blocks

Figure 2-5: Optimized blocks for S7-1200

Standard block Optimized block

Standard

Properties

e No data gaps are formed since larger tags are located at the start of a block
and smaller ones at the end.

e There is only symbolic access for optimized blocks.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 13

2 S7-1200/S7-1500 innovations

Copyright © Siemens AG 2017 All rights reserved

2.6 Optimized blocks
2.6.2 S7-1500: Structure of optimized blocks

Figure 2-6: Optimized blocks for S7-1500
Standard block

Optimized block

Optimized

- W00
i

Figure 2-7: Memory mapping for optimized blocks

optimized 4 Byte are always read at once

W W W BBBBXXX

1. Structures are located separately and can therefore be copied as block.

2. Retentive data is located in a separate area and can be copied as block.
In the event of a loss of voltage this data is saved internally in the CPU.
“MRES” resets this data to the start values located in the load memory.

Properties

o No data gaps are formed since larger tags are located at the start of a block
and smaller ones at the end.

e Faster access due to processor-optimized storage (all tags are stored in a way
so that the processor of the S7-1500 can directly read or write them with only
one machine command).

e Boolean tags are stored as byte for faster access. Thus, the controller does not
have to mask the access.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 14

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

2.6.3

e Optimized blocks have a storage reserve for loading in running operation (see
chapter 3.2.8 Downloading without reinitialisation).

e There is only symbolic access for optimized blocks.

Processor-optimized data storage for S7-1500

For reasons of compatibility to the first SIMATIC controllers, the principle of the
“Big Endian” data storage was accepted in the S7-300/400 controllers.

Based on the changed processor architecture, the new S7-1500 controller
generation always accesses 4 byte (32 bit) in “Little-Endian” sequence. Thus the

following properties result on the system side.

Figure 2-8: Data access of a S7-1500 controller

Standard block
max. 64kB

Standard

@|i|2(8[4|5|6|7
BYTE

Conversion for

processor access:
— 0 Big > Little Endian
:” r.-\
; , REAL
..2}.'/
@’/ Big-Endian
1

0=
~~ WORD
1. Big-Endian

Copying requires time due to resorting!

Table 2-3: Data access of a S7-1500 controller

Optimized block
C___ 3 max. 16MB

0 1 2 3 4 5 6 7

- 1
Best possible processor
data storage:

REAL No conversion

required.

Little-Endian

1

WORD
0 Little-Endian

BYTE

0w o —~< m

2) Reserve

Standard block

Optimized block

1. In the event of an unfavorable offset,
the controller requires 2x16 bit access
to read a 4 byte value (for example,
REAL value).

In addition the bytes have to be turned.

The controller stores the tags access-
optimized. Access is with 32 bit (REAL).

Turning the bytes is not required.

2. The entire byte is read and masked per
bit access.

The complete byte is blocked for any
other access.

Each bit is assigned a byte.

The controller does not have to mask
the byte when accessing.

3. Maximum block size is 64kB.

Maximum block size can be up to
16MB.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

15

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

Recommendation

In general, only use optimized blocks.

You do not require absolute addressing and you can always address with
symbolic data (object-related). Indirect addressing is also possible with
symbolic data (see chapter 3.6.2 ARRAY data type and indirect field
accesses).

Processing optimized blocks in the controller is considerably faster than for
standard blocks.

Avoid the copying/assigning of data between optimized and non-optimized
blocks. The data conversion required between source and target format
requires high processing time.

Example: Setting optimized block access

By default, the optimized block access is enabled for all newly created blocks for
S7-1200/1500. Block access can be set for OBs, FBs and global DBs. For instance
DBs, the setting derives from the respective FB.

Block access is not automatically reset if a block is migrated from a S7-300/400
controller to a S7-1200/1500. You can later change the block access to “Optimized
block access”. After changing the block access, you have to recompile the
program. If you change FBs to “Optimized block access”, the assigned instance
data blocks are automatically updated.

Follow the instructions to set the optimized block access.
Table 2-4: Setting optimized block access

Step Instruction
1. Click the “Maximizes/minimizes the Overview” button in the project tree.
Project tree
Devices
Name
¥ _] ProgrammingGuideline J
B¢ Add new device
NS — i
2. Navigate to “Program blocks”.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 16

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

Step

Instruction

3.

Here, you see all blocks in the program and whether they are optimized or not.
In this overview the status “Optimized block access” can be conveniently

R N e

changed.
EYE
Name Medified Address Type |Language | Optimized block access
2/24/2017 -347:35 PM 0B1 e]:] LAD E
F LGF_PulseRelay [FE1002... 212412017 -346:13 FM FB10027 FB sCL
F LGF_SetTime [FB10028] .. 2124/2017 -3:46:40 PM FB10028 FB sCL
F LGF_Timerswitch [FB100... 2/2412017 -3:45:110 PM FB10002 FB sCL
@ InstLGF_PulseRelay [DB1] 2/24/2017 - 3:46:20 PM pe1t oe oe
i@ instLGF_SetTime [DB2] 212412017 -3:46:40 FM DB2 DB DB
@ InstLGF_TimerSwitch [DB._.. 2/2412017 - 3:46:58 PM DB3 DB DB
T e e Y R a ad aerw

Note: Instance data blocks (here “Function_block_1_DB”) inherit the status

“optimized” from the associated FB. This is why the “optimized” setting can only
be changed on the FB. After the compilation of the project, the DB takes on the
status depending on the associated FB.

Display of optimized and non-optimized blocks in the TIA Portal

In the two following figures the differences between an optimized and a non-

optimized instance DB can be seen.

For a global DB there are the same differences.
Figure 2-9: optimized data block (without offset)

InstLGF_PulseRelay
Name Data type | Startvalue
< ~ Input
2 |- trigger Bool false
3 4w set Bool false
4 g = reset Bool false
3 4 ¥ Output
6 | m= out Bool false
N e e I A Vo

"\r*" \Hu-r‘v—\f\r-...w‘\.

!

Figure 2-10: non-optimized data block (with offset)

InstLGF_PulseRelay
Name Data type | Offset
<2l ~ Input
2 |4q0 = trigger Bool 0.0 fa
3 g m set Bool 0.1 fa
4 | = reset Boal 02
5 < ™ Output

I
s
Start valie
Y

3

y

S

Table 2-5: Difference: Optimized and non-optimized data block

Optimized data block

Non-optimized data block

shown.

Optimized data blocks are addressed
symbolically. Therefore no “offset” is

For non-optimized blocks the “offset” is
shown and can be used for addressing.

In the optimized block you can declare
each tag individually with “Retain”.

In non-optimized blocks only all or no tag
can be declared with “Retain”.

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017

17

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

The retentivity of tags of a global DB is directly defined in the global DB. By default,
non-retain is preset.

Define the retentivity of tags in an instance in the function block (not the instance
DB). These settings are therefore valid for all instances of this FB.

Access types for optimized and non-optimized data blocks

Note

26.4

In the following table all access types for blocks are displayed.
Table 2-6: Access types

Access type Optimized block Non-optimized
block

Symbolic yes yes

Indexed (fields) yes yes

Slice access yes yes

AT instruction no yes
(Alternative: slice access)

Direct absolute no yes

(Alternative: ARRAY with INDEX)

Indirect absolute (pointer) no yes

(Alternative: VARIANT /
ARRAY with index)
Load without reinitialization yes no

More information can be found in the following entries:

What types of access are available in STEP 7 (TIA Portal) to access data values
in blocks and what should you watch out for with the differences between the
types?

https://support.industry.siemens.com/cs/ww/en/view/67655611

Which properties should you watch out for in STEP 7 (TIA Portal) for the
instructions "READ_DBL" and "WRIT_DBL" when using DBs with optimized
access?

https://support.industry.siemens.com/cs/ww/en/view/51434747

Conversion between optimized and non-optimized tags

It is generally recommended to work with optimized tags. However, if in individual
cases, you want to keep your programming so far, there will be a mix of optimized
and non-optimized data storage in the program.

The system knows the internal storage of each tag, irrelevant whether structured
(derived from an individually defined data type) or elementary (INT, LREAL, ...).

For assignments with the same type between two tags with different memory
storage, the system converts automatically. This conversion requires performance
for structured tags and should therefore be avoided, if possible.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 18

https://support.industry.siemens.com/cs/ww/en/view/67655611
https://support.industry.siemens.com/cs/ww/en/view/51434747

2 S7-1200/S7-1500 innovations

Copyright © Siemens AG 2017 All rights reserved

2.6 Optimized blocks

2.6.5 Parameter transfer between blocks with optimized and non-optimized
access

When you transfer structures to the called block as in/out parameters (InOut), they
are transferred by default as reference (see chapter 3.3.2 Call-by-reference).

However, this is not the case if one of the blocks has the property “Optimized
access" and the other block the property “Default access”. In this case, all
parameters are generally transferred as copy (see chapter 3.3.1 Call-by-value).

In this case the called block always works with the copied values. During block
processing, these values may be changed and they are copied back to the original
operand, after processing of the block call.

This may cause problems if the original operands are changed by asynchronous
processes, for example, by HMI access or interrupt OBs. If the copies are copied
back to the original operands after the block processing, the asynchronously
performed changes on the original operands are overwritten.

Note More information can be found in the following entries:

Why is data of the HMI system or the web server sometimes overwritten in the
S7-15007?
https://support.industry.siemens.com/cs/ww/en/view/109478253

Recommendation

¢ Always set the same access type for the two blocks that communicate with
each other.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 19

https://support.industry.siemens.com/cs/ww/en/view/109478253

2 S7-1200/S7-1500 innovations

Copyright © Siemens AG 2017 All rights reserved

2.6 Optimized blocks

2.6.6 Communication with optimized data

The interface (CPU, CM) transfers the data in the way it is arranged (irrespective of
whether it is optimized or non-optimized).

Figure 2-11: CPU-CPU communication

Compatible
data transfer

Send CPU (byte stream) Receive CPU
#instTSEND_C [(0a] B1] 32] 39] 4F 60 7a] .. | FF] #instTRCV_C
TSEND_C alt TRCV_C alt
. St esvoR|
Send data can be: Receive data can be:
* optimized * optimized
* not optimized * not optimized
+ Tag (any type) + Tag (any type)
+ Buffer (byte array) » Buffer (byte array)
Example
e Atag with PLC data type (data record) shall be passed on to a CPU.
¢ Inthe send CPU the tag is interconnected as actual parameter with the
communication block (TSEND_C).
¢ Inthe receive CPU the receive data is assigned to a tag of the same type.
¢ In this case symbolic work on the received data can be directly continued.
Note Any tags or data blocks can be used as data records (derived from PLC data
types).
Note It is also possible to define the send and receive data differently:
Send data Receive data
optimized --> non-optimized
non-optimized --> optimized

The controller automatically makes sure that the data transfer and storage is
correct.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 20

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.7 Block properties

2.7

2.7.1

Block properties

Block sizes

For S7-1200/1500 controllers the maximum size of blocks in the main memory was
noticeably enlarged.

Table 2-7: Block sizes

Max. size and number S7-300/400 S7-1200 S7-1500
(without consideration of
memory size)
DB Max. size 64 kB 64 kB 64 kB
16 MB (optimized
CPU1518)
Max. number 16.000 65.535 65.535
FC/FB Max. size 64 kB 64 kB 512 kB
Max. number 7.999 65.535 65.535
FC/FB /DB | Max. number | 4.096 (CPU319) 1.024 10.000 (CPU1518)
6.000 (CPU412)

Recommendation

2.7.2

e Use DBs for S7-1500 controllers as data container of very large data volumes.

e You can store data volumes of > 64 kB with S7-1500 controllers in an
optimized DB (max. size 16 MB).

Number of organization blocks (OB)

With OBs a hierarchical structure of the user program can be created. There are

different OBs available for this.

Table 2-8: Number of organization blocks

Organization block type S7-1200 S7-1500 Benefits
Cyclic and startup OBs 100 100 Modularization of the
user program
Hardware interrupts 50 50 Separate OB for each
event possible
Delay interrupts 20 Modularization of the
4% user program
Cyclic interrupts 20 Modularization of the
user program
Clocked interrupts no 20 Modularization of the

user program

* As of firmware V4, 4 delay interrupts and 4 cyclic interrupts are possible.

Recommendation

e Use OBs in order to structure the user program hierarchically.

e Further recommendations for the use of OBs can be found in chapter
3.2.1 Organization blocks (OB).

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5, 03/2017

21

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S

7-1500 innovations

2.7 Block properties

2.7.3

Advantages

Properties

Example

Block interface — hide block parameters (V14 or higher)

When calling the block, block parameters can be specifically displayed or hidden.
Here, you have three options that you can configure individually for each formal

parameter.
° “ShOWH
e “Hide”

e “Hide if no parameter is assigned”

e Better overview for blocks with many optional parameters

e Can be used for:
- FCs, FBs

- In, Out, InOut

Figure 2-12: Hide block parameters

Defaultvalue

Bool Blse Nen-retzin

PosAxisControl
name Data type
<@ ~ Input
<@ = b positioningAxs TO_Positioning#xis
@= poweron
@8 acknowledge Bool
@ checkFeedert Bool
a checkFeeder2 Bool
a checkFeeder3 Bool
a manhede Bool
<@ v Output

0@ emor

status
statusiD

Bool
Bool
Word

Retain

Non-retain
Norwretain

Accessiblei... v

DR IOEENZ

Visiblity in block calls in LAD/FBD

O Show
{#) Hide

{7} Hide ifno parameter is assigned

g..

PR 4 = o1

“Global®.
—iaxiz1error

“Global".
—jaxis 15tatus

"Global®.
awislstatuslD

» Block title: ..
¥ Network1: ...
Comment
General | Supervisions *InstPos AvisContr
General ff visible in HM engineering ol
Attributes
"PosAuis Control”
Visiblity in block calls in LAD/FBD
EN ENO
Q) show “PositioningAxds 1° positioning Axs
(@ Hide
- - error
() Hide ifno parameter s assigned Global®.
masterPowerOn — poweron
. . . STETUS
"InstPos AxisContr Global™.
al” masterAcknowled
PosodsControl 98 —acknowledoe statusiD
false —
EM ENO
“PositioningAxis1” ositioningAxs . . “Global®.
£ 2 Global". testFeeder? —
*Global”. error —4@xsierrar ol
masterPowerOn — powerOn “Global™. =
“Global” status —8xsTstatuz “Global®.
; . masteriManualido
masterAcknowled "Gl de d
—imanhode
98¢ —lacknowledge statusiD #asistatusiD =
“Global®.
masterManualido
de — rmanMode -

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017

22

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.8 New data types for S7-1200/1500

2.8

Note

2.8.1

Note

New data types for S7-1200/1500

S7-1200/1500 controllers support new data types to make programming more
convenient. With the new 64 bit data types, considerably larger and more precise
values can be used.

More information can be found in the following entry:

In STEP 7 (TIA Portal), how do you convert the data types for the S7-
1200/15007?
https://support.industry.siemens.com/cs/ww/en/view/48711306

Elementary data types

Table 2-9: Integer data types

Type Size Value range
USint 8 bit 0..255
Sint 8 bit -128 .. 127
Ulnt 16 bit 0..65535
UDInt 32 bit 0 .. 4.3 Mio
ULInt* 64 bit 0 .. 18.4 Trio (10'®)
Lint* 64 bit -9.2 Trio .. 9.2 Trio
. 16#0000 0000 0000 0000 to
Lword 64 bit 16# FFFF FFFF FFFF FFFF

* only for S7-1500

Table 2-10: Floating-point data types

Type Size Value range

Real 32 bit (1 bit prefix, 8 bit exponent, 23 bit mantissa), -3.40e+38 .. 3.40e+38
precision 7 places after the comma

LReal | 64 bit (1 bit prefix, 11 bit exponent, 52 bit mantissa), | -1.79e+308 .. 1.79e+308
precision 15 places after the comma

More information can be found in the following entries:

Why, in STEP 7 (TIA Portal), is the result of the DInt Addition in SCL not
displayed correctly?
https://support.industry.siemens.com/cs/ww/en/view/98278626

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 23

https://support.industry.siemens.com/cs/ww/en/view/48711306
https://support.industry.siemens.com/cs/ww/en/view/98278626

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.8 New data types for S7-1200/1500

2.8.2 Data type Date_Time_Long

Table 2-11: Structure of DTL (Date_Time_Long)

‘ Year ‘ Month ‘ Day ‘Weekdayl Hour ‘ Minute ‘ Second ‘Nanosecond

DTL always reads the current system time. Access to the individual values is by the
symbolic names (for example, My Timestamp.Hour)
Advantages

e All subareas (for example, Year, Month, ...) can be addressed symbolically.

Recommendation

Use the new data type DTL instead of LDT and address it symbolically (for
example My Timestamp.Hour).

Note More information can be found in the following entries:

In STEP 7 (TIA Portal), how can you input, read out and edit the date and time
for the CPU modules of S7-300/S7-400/S7-1200/S7-1500?
https://support.industry.siemens.com/cs/ww/en/view/43566349

Which functions are available in STEP 7 V5.5 and in TIA Portal for processing
the data types DT and DTL?
https://support.industry.siemens.com/cs/ww/en/view/63900229

2.8.3 Other time data types
Table 2-12: Time data types (only S7-1500)
Type Size Value range
LT#-106751d23h47m16s854ms775us808ns
LTime 64 Bit to

LT#+106751d23h47m16s854ms775us807ns

LTOD#00:00:00.000000000
LTIME_OF_DAY 64 Bit to

LTOD#23:59:59.999999999

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 24

https://support.industry.siemens.com/cs/ww/en/view/43566349
https://support.industry.siemens.com/cs/ww/en/view/63900229

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.8 New data types for S7-1200/1500

284 Unicode data types

With the help of the data types WCHAR and WSTRING Unicode characters can be

processed.

Table 2-13: Time data types (only S7-1500)

Type Size Value range
WCHAR 2 Byte -
Preset value:
WSTRING (4 + 2*n) Byte 0 ..254 characters
Max. Value: 0 ..16382

n = length of string

Properties

Example

WCHAR# ‘a

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

Line breaks, form feed, tab, spaces
Special characters: Dollar signs, quotes

WSTRING# ‘Hello World!‘!

Processing of characters in, for example, Latin, Chinese or other languages.

25

2 S7-1200/S7-1500 innovations

2.8 New data types for S7-1200/1500

Copyright © Siemens AG 2017 All rights reserved

2.8.5 Data type VARIANT (S7-1500 and S7-1200 from FW4.1)
A parameter from the type VARIANT is a pointer that can point to tag of different
data types. In contrast to the ANY pointer, VARIANT is a pointer with type test.
This means that the target structure and source structure are checked at runtime
and have to be identical.
VARIANT, for example, is used for communication blocks (TSEND_C) as input.
Figure 2-13: Data type VARIANT as input parameters for instruction TSEND_C
#instTSEND_C
TSEND_C
@\
EN END
false — REQ DOME — -
#statConnect CONMNECT BUSY =—i...
#statSendData DATA ERROR = .-
- STATUS
VARIANT
Here the structure is checked to TCON_IP_v4
Advantages
e Integrated type test prevents faulty access.
e The code can be more easily read through the symbolic addressing of the
variant tags.
e Code is more efficiently and within a shorter time.
e Variant pointers are clearly more intuitive than ANY pointers.
e The right type of variant tags can be used directly with the help of system
functions.
¢ Flexible and performant transfer of different structured tags is possible.
Properties

In a comparison between ANY and variant, the properties can be seen.

Table 2-14: Comparison ANY and variant

ANY

Variant

Requires 10 byte memory with defined
structure

Does not require a main memory for the
user

Initialization either via assignment of the
data area or by filling the ANY structure

Initialization by assigning the data area or
system instruction

Non-typed — type of an interconnected
structure cannot be recognized

Typed — interconnected type and for arrays
the length can also be determined

Partly typed — for arrays the length can also
be determined

VARIANT can be evaluated and also
created via system instructions

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

26

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.8 New data types for S7-1200/1500

Recommendation

e Check where before you had to use the ANY pointer. In many cases a pointer
is no longer necessary (see following table).

e Use the data type VARIANT only for indirect addressing when the data types

are only determined at program runtime.

- Use the data type VARIANT as InOut formal parameter to create generic
blocks that are independent from the data type of the actual parameters

(see example in this chapter).

- Use the VARIANT data type instead of the ANY pointer. Errors are
detected early on due to the integrated type test. Due to the symbolic
addressing, the program code can be easily interpreted.

- Use the variant instruction, for example, for type identification (see
following example and chapter 2.9.2 VARIANT instructions)

e Use the index for arrays instead of addressing the array elements via ANY
(see chapter 3.6.2 ARRAY data type and indirect field accesses).

Table 2-15: Comparison ANY pointer and simplifications

What are ANY pointers used for? Simplification with S7-1200/1500
Programming functions that can process - | Functions with variant pointer as InOut
different data types parameter for blocks

(see following example)
Processing of arrays - | Default array functions
o for example, reading, initializing, ¢ Reading and writing with
copying of elements of the same #myArray[#index] (see chapter
type 3.6.2 ARRAY data type and indirect
field accesses)
e Copying with MOVE_BLK (see
chapter 2.9.1 MOVE instructions)
e Transferring structures and - | Transferring structures as InOut
performant processing via absolute parameters
addressing o see chapter 3.3.2 Call-by-reference
for example, transferring user-
defined structures via ANY pointer to
functions
Note If values of non-structured VARIANT tags are to be copied, you can also use

VariantGet instead of MOVE_BLK_VARIANT (chapter 2.9.2 VARIANT

instructions).

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

27

2 S7-1200/S7-1500 innovations

Copyright © Siemens AG 2017 All rights reserved

2.8 New data types for S7-1200/1500

Example

With the data type VARIANT it is possible to identify data types in the user program
and to respond to them accordingly. The following code of the FCs “MoveVariant”
shows a possible programming.

e The InOut formal parameter “InVar” (data type VARIANT) is used to show a tag
independent from the data type.

e The data type of the actual parameter is detected with the “Type_Of”
instruction

e Depending on the data type, the tag value is copied with the
“MOVE_BLK_VARIANT” instruction to the different output formal parameters.

e If the data type of the actual parameter is not detected, the block will output an
error code.

Figure 2-14: Formal parameter of the FC “MoveVariant”

MoveVariant
MNarme Data type Default value

1 <@ » Input
2 |4 « Output
3 4= outinteger Int
4 |41 = outReal Real
5 <@ = » outTypeCustom "typeCustom”
6 4l * InOut i
AT inOutvariant Variant
8 <@ » Temp
9 |<@ » Constant
10 |<@d » Return

CASE TypeOf (#inOutVariant) OF // Check datatypes

Int: // Move Integer

#MoveVariant := MOVE BLK VARIANT (SRC := #inOutVariant,
COUNT := 1,
SRC_INDEX := 0,
DEST INDEX := 0,

DEST => #outlnteger);
Real: // Move Real

#MoveVariant := MOVE_BLK_VARIANT (SRC := #inOutVariant,
COUNT := 1,
SRC_INDEX := 0,
DEST INDEX := 0,

DEST => #outReal) ;

typeCustom: // Move outTypeCustom

#MoveVariant := MOVE BLK VARIANT (SRC := #inOutVariant,
COUNT := 1,
SRC_INDEX := 0,
DEST_ INDEX := 0,

DEST => f#outTypeCustom) ;
ELSE // Error, no sufficient datatype
#MoveVariant := WORD_TO INT (#NO CORRECT DATA TYPE);
// 80B4: Error-Code of MOVE BLK VARIANT: Data types do
not correspond

END CASE;

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 28

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.9 Instructions

2.9

Note

29.1

Instructions

The TIA Portal supports the programmer with ready instructions (bit logic, times,

counter, comparator...).

Further functions can be downloaded in the following entry:

Library with general functions for (LGFP) for STEP 7 (TIA Portal) and S7-1200 /

S7-1500

https://support.industry.siemens.com/cs/ww/en/view/109479728

MOVE instructions

In STEP 7 (TIA Portal) the following MOVE instructions are available. The
MOVE_BLK_VARIANT instruction is new for S7-1200/1500.

Table 2-16: Move instructions

Instruction Usage

Properties

MOVE Copy value

Copies the content of the parameter on
the input IN to the parameter of the output
OUT.

The parameters on the input and output
must be of the same data type.

Parameters can also be structured tags
(PLC data types).

Copies complete arrays and structures.

MOVE_BLK Copy array

Copies the content of an array to another
array.

Source and target array must be of the
same data type.

Copies complete arrays and structures.
Copies several array elements with

structures as well. In addition, start and
number of elements can be specified.

UMOVE_BLK Copies array
without

interruption

Copies the content of an array
consistently without the risk of the OB
interrupting the copying process.

Source and target array must be of the
same data type.

MOVE_BLK_VARIANT | Copy array

(S7-1500 and
S7-1200 FW4.1 or
higher)

Copies one or several structured tag(s)
(PLC data types)

Recognizes data types at runtime
Supplies detailed error information

Apart from the elementary and structured
data types, PLC data types, arrays, and
array DBs are also supported.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

29

https://support.industry.siemens.com/cs/ww/en/view/109479728

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.9 Instructions

Instruction Usage Properties
Serialize converts Several data records can be combined
structured data into a single byte array and, for example,
(S7-1500 and into a byte be sent to other devices as a message
S7-1200 FW4.1 or array frame.

(S7-1500 and
S7-1200 FW4.1 or
higher)

byte array into
one or several
structure/s

higher) Input and output parameters can be
transferred as data type Variant.
Deserialize converts one Application case |-Device:

The | device receives several data

records in the input area which are copied

to different structures.

Several data records can be combined
into a single byte array. Deserialize
enables copying these to different
structures.

Figure 2-15: Serialize and deserialize (S7-1500 and S7-1200 FW4.1 or higher)

Array[0..7] of Byte

ByteO
Bytel

Byte7

Serialize

Properties

Struct3

Struct2

Structl

Int
Real
Uint

=74

Instructions such as "Serialize", "Deserialize", "CMP" (comparator) and "MOVE:
copy value" can process very large and complex structured tags. In the process,
the CPU analyses the tag structure at runtime. Processing time depends on the
following properties of the tag structure to be processed:

e Complexity of the structure

e Number of structures without the use of PLC data types

e Array of byte can be saved in optimized blocks (V14 or higher).

Recommendation

e Declare the structures with the help of PLC data types instead of with

“STRUCT”

e Reduce the number of structures used:

- Avoid, for example, multiple declaration of very similarly made up
structures. Summarize them in one single structure.

- When many elements of the structure have the same data type, use the
data type ARRAY, if possible.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

30

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.9 Instructions

e Generally, you need to distinguish between MOVE, MOVE_BLK and
MOVE_BLK_VARIANT

- Use the MOVE instruction to copy complete structures.
- Use the MOVE_BLK instruction to copy parts of an ARRAY of a known

data type.

- Only use the MOVE_BLK_VARIANT instruction if you wish to copy parts of
ARRAYSs with data types which are only known during program run-time.

Note UMOVE_BLK: The copy process cannot be interrupted by another activity of the
operating system. Therefore, the alarm reaction times of the CPU might increase
during processing of the instruction "Copy array without interruption".

For the complete description of the MOVE instructions, please refer to the TIA

Portal Online Help.

Note More information can be found in the following entries:

How do you copy memory areas and structured data in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/42603881

2.9.2 VARIANT instructions (S7-1500 and S7-1200 FW4.1 and higher)

Table 2-17: Move instructions

Instruction Usage Properties
MOVE instructions
VariantGet Read value This instruction enables you to read
the value of a tag pointing to a
VARIANT.
VariantPut Write value This instruction enables you to write

the value of a tag pointing to a
VARIANT.

Enumeration

CountOfElements

Counting elements

With this instruction you poll the
number of ARRAY elements of a tag
pointing to a VARIANT.

Comparator instructions

TypeOf() Determining the data | Use this instruction to poll the data
(only SCL) type type of a tag pointing to a VARIANT.
TypeOfElements() Determining the array | Use this instruction to poll the data
(only SCL) data type type of the ARRAY elements of a tag

pointing to a VARIANT.

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5, 03/2017

31

https://support.industry.siemens.com/cs/ww/en/view/42603881

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.9 Instructions

Instruction

Usage

Properties

Comparator instructions

VARIANT_TO_DB_ANY
(only SCL)

Determining the data
block number

This instruction queries the data
block number of an instance data
block of a PLC data type, system
data type or array DB.

DB_ANY_TO_VARIANT

Created from a data

This instruction creates the variant

(only SCL) block of a variant tag. | tag of an instance data block of a
PLC data type, system data type or
array DB.
Note For more VARIANT instructions, please refer to the online help of the TIA Portal.

Properties

Due to their complex algorithm, variant instructions require a longer processing
time then direct instructions.

Recommendation

e If possible, do not use variant instructions in loops (FOR, WHILE...) in order to
prevent an unnecessary increase of cycle time.

e Do not use a loop via the elements to copy an array, but the direct assignment

of the complete array.

2.9.3 RUNTIME

The "RUNTIME" instruction measures the runtime of the entire program, individual
blocks or command sequences. You can call this instruction in LAD, FBD, SCL and

in STL (only S7-1500).

Note More information can be found in the following entry:

With S7-1200/S7-1500, how do you measure the total cycle time of an

organization block?

https://support.industry.siemens.com/cs/ww/en/view/87668055

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

32

https://support.industry.siemens.com/cs/ww/en/view/87668055

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.9 Instructions

294 Comparison of tags from PLC data types (V14 or higher)

Two tags of the same PLC data type can be checked for similarities or
dissimilarities.

Figure 2-16: Comparison of tags from PLC data types in LAD

Function
Marme Data type Default value Supervision Comment
< ~ Input
< = F motorl “typeMotor”
41 = F motor2 "typeMotor”

I R

= <Add new
< * Output
<] = equal Boaol

e s SR |

= <Add new=

e T

HF HiF == — £

#rmotor] #equal

== { }
|Vanant| L
#rmotar2

Advantages
e Symbolic programming with structured tags
e Comparison with optimum performance
e Comparison is possible in LAB, FBD, STL.
e Comparison directly possible in STL instruction.

Example
Figure 2-17: Comparison of tags from PLC data types in STL instructions

Function
MName Data type Default value supervision Comment
¥ Input

b maotorl “typeMotor”

ade

b motor2 “typeMotor”

oW b -
L]

L} <Add new>

-4l * Output
<

L] equal Bool

=l @

L} <Add new=

L .

IF #motorl = #motor2 THEN
// Statement section IF

END IF;

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 33

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.9 Instructions
295 Multiple assignment (V14 or higher)

Advantages
Multiple assignment enables optimum programming for several tags (e.g., for
initializations).

Example

#statFilllevel := #statTemperature := #tempTemperature := 0.0;

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

34

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.10 Symbolic and comments

2.10 Symbolic and comments
2.10.1 Programming editor

Advantages

You can make the code easy to understand and readable for your colleagues by
using symbolic names and comments in your program.

The complete symbolic is saved together with the program code during the
download to the controller and therefore allows fast maintenance of the plant even
when no offline project is available.

Recommendation
e Use the comments in the programs in order to improve readability. Network title
comments are visible even if networks are collapsed.

e Design the program code in a way so that colleagues can also understand the
program straight away.

In the following example you can see the extensive options for commenting the
program in the editors.

Example
In the following figure you can see the options for commenting in the LAD editor
(same functionality in FDB).
Figure 2-18: Commenting in the user program (LAD)

s L, EAER@8r @ Peadad =z ad

HF HiF —— - £

= Dol 4i4lo. *Miain Brogram Sweep (Cycle)”
Information: ... I

¥ Network 1:| Start Engine I@
| startthe engine I@

| “activateLeft” “activateRight” “startEngine”

] |] L i }
| LI} L | L

- Metwork 2: Engine control function

call function block for engine control @

“InstEngineContro
-

{Engine contral |
with speed and :
iacceleration

“EngineControl i
EN ENO : —
50.0— speed

10.0 — acceleration

The following comments are possible:

1. Block comment

2. Network title comment

3. Network comment

4. Comment on instructions, blocks and functions (open, close, etc.)

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 35

Copyright © Siemens AG 2017 All rights reserved

2 S7-1200/S7-1500 innovations

2.10 Symbolic and comments

In the programming languages SCL and STL, it can be commented with // in every

row.
Example
statFillingLevel := statRadius * statRadius * PI * statHight;
// Calculating the filling level for medium tank
Note For further information, refer to the following entry:
In STEP 7 (TIA Portal), why are the display texts, titles and comments no longer
displayed after opening the project in the block editor?
https://support.industry.siemens.com/cs/ww/en/view/41995518
2.10.2 Comment lines in watch tables
Advantages

e For better structuring it is possible to create comment lines in the watch table.

Recommendation

e Always use comment lines and sub-divide your watch table.
e Please also comment on the individual tags.

Example

Figure 2-19: Watch table with comment lines

Address
/i Building 1 floor 3 reom 21

"Building” fansSpeed1

"Building” temperature

"Building” light1

BT "L S

if Building 2 floor 2 room 48
"Building” fanspeed2
"Building” temperature2
"Building” light2

Il Building 4 floor 4 room 77
“Building® fanSpeed3
"Building® . termperature3
"Building® light3

i "= e B = LR ¥ 5

ko= O

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 36

https://support.industry.siemens.com/cs/ww/en/view/41995518

2 S7-1200/S7-1500 innovations

2.11 System constants

2.11 System constants

For S7-300/400 controllers the identification of hardware and software components
is performed by logic address or diagnostic addresses.

For S7-1200/1500 the identification is by system constants. All hardware and
software components (e.g., interfaces, modules, OBs, ...) of the S7-1200/1500
controllers have their own system constants. The system constants are
automatically created during the setup of the device configuration for the central
and distributed I/O.

Advantages

e You can address via module names instead of hardware identification.

Recommendation
e Assign function-related module names in order to identify the module easily
during programming.
Example

In the following example you can see how system constants are used in the user
program.

Figure 2-20: “System constants” in the user program

[@Tags [@User/” |H>g System constants I
2 EEE IO BT

Default tag table
Name Name

Devices

] = &

7| 9 G & 02

Copyright © Siemens AG 2017 All rights reserved

~ [%] RobotControl
~ [l RobotControl [CPU 1516-3 PN/DP]
[I1 Device configuration
%] Online & diagnostics

» [zl Program biocks

[Technology objects
External source files
FLCtags
25 Show all tags

37 | Local-Display

38 [F] Local-Exec

32 [Local-DP_interface_1

@ Local~PROFINET_ interface_1

5 [5] Local~PROFINET interface_2

Data type Valuel
Hw_SubModule 54
Hw_SubModule 52
Hw_interface 60
Hw_interface 64

=] Local-PROFINET interface_i~Port_1 Hw_Interface 65
2 | Local-PROFINET interface_i~Port 2 Hw_Interface 66

Hu_inteface 72

[F] Local-PROFINET interface_2~Port_1 Hw_interface 73

HF i = - T

w Block title: “Msin Program Sweep (Cycle)”

¥ Network 1:

GET_DIAG
5 $z] oB_main OB_PCYCLE 1 EN ENO
——— = =] oB_pull or plug of modules OB_Any 83 “Global" “Global®.
54 Default tag table [93 7 |5l oB_Programming error OB_An 121 diaghod diagRetval
i ke 9 g 1y iaghtede — MoDE RET_VAL — diagRetva
[{E] Local~PROFINET_IO-System Hw_loSystem 260 “Global®
[55) watch and force tables [5] 0B_Hardware interrup LT ONT DIAG — diagcNTDiag

[online backups
[Traces

[Device proxydata
Bt Program info

[PLC supervisions &alarms
%) PLC alarm text fists
~ [Local modules 3
= o 15163 ...

Il RobotArmLeft

T

» [pistributed lio

3 T

=

t Test Statio... OB_HWINT g,
50 N — = m—rr T 16%(|
51 B Local-RobotArmLeft Hw_SubModule 258

Hw_SubModule 259

*Global".diagDiag — DIAG

1. System constants of a controller can be found in the “PLC tags —
Default tag table” folder.

2. The system constants are in a separate list in the “Default tag table”.

3. Inthis example the symbolic name “RobotArmLeft” was assigned for a DI

module.

You can also find the module under this name in the system constant table.
In the user program “RobotArmLeft” is interconnected with the “GET_DIAG”
diagnostic block.

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5, 03/2017

37

2 S7-1200/S7-1500 innovations

Copyright © Siemens AG 2017 All rights reserved

2.12 User constants

Note Open the “Device configuration” to quickly find the system constant for each
device.

o 1 2 3 4 5 (] 7
Rail_0

<] | 1l

General 10 tags |Systemconstants I Texts

Name Type Hardware identifier Commen
FIP OB Servo Fip 32788

OB_Main OB_PCYCLE 1
0B_Cyclicinterrupt 0B_Cyclic 30
PLC_2[MC] Hw_SubModule 51
PLC_Z[Comman] Hw_SubModule 50
PLC_Z[Display] Hw_SubModule 54
PLC_Z[Exec] Hw_SubModule 52
PLC_2 Hw_Subldodule 49
DF_interface_1 Hw_lnterface 60
PROFIMNET_interface_1 Hwi_lnterface 64
PROFIMNET_interface_2 Hwi_lnterface 72
Port_1[PMN](1)} Hwi_lnterface 73
Port_1[PN] Hwi_lnterface 65
Pr= 2[PN] Hw _Inte~ce 66

Note More information can be found in the following entries:

What meaning do the system constants have for the S7-1200/1500 in STEP 7
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/78782835

2.12 User constants

Constant values can be saved with the help of user constants. Generally, there are
local constants for OBs, FCs and FBs and global constants for the entire user
program in a controller.

Advantages

e User constants can be used for changing constant values globally or locally for
all usage locations.

e With user constants, the program can be made more readable.

Properties
e Local user constants are defined in the block interface.
e Global user constants are defined in “PLC tags”.
e The user program only enables read access to the user constants.
e For know-how protected blocks the user constants are not visible.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 38

https://support.industry.siemens.com/cs/ww/en/view/78782835

2 S7-1200/S7-1500 innovations

Copyright © Siemens AG 2017 All rights reserved

2.13 Internal reference ID for controller and HMI tags

Recommendation

e Use the user constants for improved readability of the program and central
changeability of ...

- error codes,

- CASE instructions,

- conversion factors,

- hatural constants ...

Example
Figure 2-21: Local user constant of a block for CASE instructions
EngineControl
Name Data type Default value Retain
1 4@ = Input
2 @~ errorNumber Int 0 Non-retain
T Out;u\t\ k
5 4 ¢ InQut
6 <@ » Static
7 40 b Temp
8 <)~ Constant
9 = ERROR_TEMPERATURE Int 10
10 = ERROR_WOLTAGE Int 55
11 e ERROR_TORQUE Int 89
1 CICASE #errorNumber OF
2 #ERROR_TEMPERATURE: // Error handling for temperature ...
; #EI’{RC-R:WJLTASE: // Error handling for voltage ...
; V}EI;.RC-R_IDRQUE: // Error handling for torgue ...
: EL;E
10 EN);:ASE;
Figure 2-22: Global user constant of a controller
ProgrammingGuideline » PLC_1 [CPU 1511-1 PN] » PLC tags
<1 Tags IEI User constants I@ System constants
22 D ® =
PLC tags
Mame Tag table Data type Value
1 = globalMinV alue |Defaulttag table Int 10
2 = globalMaxvalue Defsulttag table Int 55 I
N [Aedre | EE
Note Another application case of constants is available in the following FAQ:

How can you convert the unit of a tag in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/61928891

2.13 Internal reference ID for controller and HMI tags

STEP 7, WinCC, Startdrive, Safety and others integrate into the joint data base of
the TIA Portal engineering framework. Changes of data are automatically accepted
in all the locations in the user program, independent from whether this happens in
a controller, a panel or a drive. Therefore no data inconsistencies can occur.

If you create a tag, the TIA Portal automatically creates a unique reference ID. The
reference ID cannot be viewed or programmed by you. This procedure is internal
referencing. When changing tags (address), the reference ID remains unchanged.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 39

https://support.industry.siemens.com/cs/ww/en/view/61928891

2 S7-1200/S7-1500 innovations

2.13 Internal reference ID for controller and HMI tags

In the figure below the internal reference to the data is displayed schematically.
Figure 2-23: Internal reference ID for PLC and HMI
PLC1 HMI1

PLC Symbol | Absolute | Internal PLC Internal HMI | HMI Symbol Access Connection
name address | reference 1D Reference ID name mode with PLC

Copyright © Siemens AG 2017 All rights reserved

000138

009876 motorl <symbolic | PLC1_HMI1
access>

valve2

Note The ID is changed by ...

000578 valve2 <symbolic | PLC1_HMI1
access>

e renaming tag.
e changing type.
o deleting the tag.

Advantages
e You can rewire tags without changing internal relations. The communication
between controller, HMI and drive also remains unchanged.
e The length of the symbolic name does not have an influence on the
communication load between controller and HMI.
Properties

If you change the addresses of PLC tags, you only have to reload the controller
since the system also addresses the system internally with the reference IDs. It is
not necessary to reload the HMI devices (see Figure 2-24: Changing address or

adding row).
Figure 2-24: Changing address or adding row
PLC tags
PLC tags PLC tags
Name Data type Address Narne Data type Address
1 < motor1 Bool %10.0 <@ motor1 Bool %I2.0
: P
DB Elements
R Dats type | Offsst J a1 Itam:tatic S———
1 @~ Static Adding row P s e inn aoal _ Ellon
? i - la.g BD.?.I._ = &m PLC < = |‘ﬂg Bool o 0,1|

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 40

2 S7-1200/S7-1500 innovations

Copyright © Siemens AG 2017 All rights reserved

2.14 STOP mode in the event of errors

2.14 STOP mode in the event of errors

In comparison to S7-300/400 there are fewer criteria with the S7-1200/1500 that
lead to the “STOP” mode.

Due to the changed consistency check in the TIA Portal, the “STOP” mode for S7-
1200/1500 controllers can already be excluded in advance in most cases. The
consistency of program blocks is already checked when compiling in the

TIA Portal. This approach makes the S7-1200/1500 controllers more “fault tolerant”
to errors than their predecessors.

Advantages

There are only three fault situations that put the S7-1200/1500 controllers into the
STOP mode. This makes the programming of the error management clearer and

easier.
Properties
Table 2-18: Response to errors of S7-1200/1500
Error S7-1200 S7-1500
1. | Cycle monitoring time RUN STOP
exceeded once (when OB80 is not
configured)
2. | Cycle monitoring time STOP STOP
exceeded twice
3. | Programming error RUN STOP
(when OB121 is not
configured)

Error OBs:

e OB80 “Time error interrupt” is called by the operating system when the
maximum cycle time of the controller is exceeded.

e OB121 “Programming error” is called by the operating system when an error
occurs during program execution.

For every error, in addition, an entry is automatically created in the diagnostic
buffer.

Note For S7-1200/1500 controllers there are other programmable error OBs
(diagnostic error, module rack failure, etc.).

More information on error responses of S7-1200/1500 can be found in the online
help of the TIA Portal under “Events and OBs”.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 41

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.1 Operating system and user program

3
3.1

3.2

Advantages

General Programming

Operating system and user program

SIMATIC controllers consist of operating system and user program.

e The operating system organizes all functions and sequences of the controller
that are not connected with a specific control task (e.g. handling of restart,
updating of process image, calling the user program, error handling, memory
management, etc.). The operating system is an integral part of the controller.

e The user program includes all blocks that are required for the processing of
your specific automation task. The user program is programmed with program
blocks and loaded onto the controller.

Figure 3-1: Operating system and user program

FB -

Local

= = | FC |

cyclic o
call . Global

For SIMATIC controllers the user program is always executed cyclically. The
“Main” cycle OP already exists in the “Program blocks” folder after a controller was
created in STEP 7. The block is processed by the controller and recalled in an
infinite loop.

Program blocks

In STEP 7 (TIA Portal) there are all familiar block types from the previous STEP 7
versions:

e Organization blocks
e Function blocks

e Functions

e Data blocks

Experienced STEP 7 users will know their way around straight away and new
users can very easily get familiar with the programming.

e You can give your program a good and clear structure with the different block
types.

e Due to a good and structured program you get many function units that can be
multiply reused within a project and also in other projects. These function units
then usually only differ by a different configuration (see chapter
3.2.9 Reusability of blocks).

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 42

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.2 Program blocks

e You project or your plant becomes more transparent. This is to say, error
states in a plant can be more easily detected, analyzed and removed. In other
words, the maintainability of your plant becomes easier. This is also the case
for errors in programming.

Recommendation
e Structure your automation task.

e Divide the entire function of your plant into individual areas and form sub-
function units. Divide these function units again into smaller units and
functions. Divide until you get functions that you can use several times with
different parameters.

e Specify the interfaces between the function units. Define the unique interfaces
for functionalities that are to be delivered by “external companies”.

All organization blocks, function blocks and functions can be programmed with the
following languages:

Table 3-1: Programming languages

Programming language S7-1200 S7-1500
Ladder diagram (LAD) yes yes
Function block diagram (FBD) yes yes
Structured Control Language (SCL) yes yes
Graph no yes
Statement list (STL) no yes
3.2.1 Organization blocks (OB)
Figure 3-2: “Add new block” dialog (OB)
MName:
[Main_1 |
] £ Program cycle Language -
Organiztion & Cyclic interrupt O]
bloc| () st
& Diagnostic error interrupt
! & Pull or plug of modules Description:
it | || St g e cai s oy
10 access error where you place the instructions that control
& Time of day :T:(rk?_]ph(a ion, and call additional user
& MCinterpolator
FC & MCServo
& Synchronous Cycle
Function & Stotus
& Update
& Frofile
&
Data block
> | Additional information
1) A 2 gpen

OBs are the interface between the operating system and the user program. They
are called by the operating system and control, for example, the following
processes:

e Startup behavior of the controller

e Cyclic program processing

e Interrupt-controlled program processing
e Error handling

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 43

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.2 Program blocks
Depending on the controller a number of different OB types are available.

Properties

e OBs are called by the operating system of the controller.

e Several Main OBs can be created in a program. The OBs are processed
sequentially by OB number.

Figure 3-3: Using several Main OBs

User program

Mainl

= g
MainX F8
0OB200 — |

Recommendation

e Encapsulate the different program parts which should maybe be replaceable
from controller to controller, into several Main OBs.

e Avoid the communication between the different Main OBs. They can then be
used independent of each other. If you nevertheless exchange data between
the individual main OBs, use the global DBs (see chapter 4.2 No bit memory
but global data blocks).

e Divide all program parts that belong to each other into folders and store them
for reusability in the project or global library.

Figure 3-4: Storing program parts in order in the project library
ﬁh\dd new block =
& Main [0B1] Options
» [iz] BasicPLCSettings E: | Library view [
* [£:] Communication
4 Communication [OB125]
4 CPUCPUComm [FB1]
@ InstPrintToTransport [DE7]
¥ |tz Printsenal
48 Printserial [0B123] | Master copies

48 FrintAdvanced [FE3] \

& InctlabelPrint IDRS] E Copy of Program blocks in PrintSerial

~ [&] Transport ¥ Copy of Frogram blocks in Transpart
4 Transport [OB124]

4 EngineControl [FB2]
| InstTransporiBelt [DBS]

W

Project library

EHEI B
= L1 Project library

] ETI Types

¥ Copy of Frogram blocks in Communication

Further information is available in chapter 3.7 Libraries.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 44

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.2 Program blocks

Note More information can be found in the following entry:

Which organization blocks can be used in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/40654862

3.2.2 Functions (FC)
Figure 3-5: “Add new block” dialog (FC)
[trone ===y
MName:
[Block_1 |
[B 1 —)
Organizti () manual
block @ sutomatic
| o
Function block Functions are code blocks or subroutines without dedicated memory.
L
Function
&
Data block
more.
> | Additional information
——

FCs are blocks without cyclic data storages. This is why the values of block
parameters cannot be saved until the next call and have to be provided with actual
parameters when called.

Properties
e FCs are blocks without cyclic data storages.

e Temporary tags are undefined when called in non-optimized blocks. In
optimized blocks, the values are always preset with the default value (S7-1500
and S7-1200 firmware V4 and higher). Thus, the resulting behavior is not
accidental but reproducible behavior.

e In order to permanently save the data of an FC, the functions of the global data
blocks are available.

e FCs can have several outputs.
e The function value can be directly reused in SCL in a formula.

Recommendation

e Use the functions for frequently recurring applications that are called several
times in different locations of the user program.

e Use the option to directly reuse the function value in SCL.
<Operand> := <FC name> (Parameter list);

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 45

https://support.industry.siemens.com/cs/ww/en/view/40654862

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.2 Program blocks

Example
In the following example a mathematical formula is programmed in a FC. The result
of the calculation is directly declared as return value and the function value can be
directly reused.
Table 3-2: Reusing function value
Step Instruction
1. Create an FC with the mathematical formula (circular segment) and define the
“return” value as the result for the formula.
CircularSegmentReturn
'FC Name Data type Default value Supervision Comment
< ¥ Input
a= h LReal
< = r LReal
<l » Output
< b InOut
<l » Temp
< Pk Constant
<If* Return
aje CircularsegmentReturn LReal
|F... CASE.. FOR.. WHIE. . . gegion
1 #CircularSegmentReturn := SQR({#r) * ACOS({1-#h/#r) - SQRT (2*#r*#h-SQR(#h)) * (#r-#h);
2. Call the FC with the circular segment calculation in any block (SCL).
<Operand> := <FC name> (parameter list);
Name Data type Default value Retain Accessiblef... |’
< ¥ Output
[] <Add news=
- ¥ InDut
= <Add new>
<4 ¥ Static
< = statAreal LReal 0.0 Retain =]
< = stathreaZ LReal 0.0 Setin IDB =)
< = statHeight LReal 0.0 Mon-retain @
g = statRadius LRezl 0.0 Mon-retain E
- statReturn LReal 0o Non-retain E
(<] I
e T w
o S OB MHAE ey secon
1 #statHeight := 17
2 #3tatRadius := 27
3
4 I#Statl_:eal := "CircularSegmentReturn™ (r := #s3tatRadius, h := #statﬂeighti;l
Note More information can be found in the following entries:

What is the maximum number of parameters you are allowed to define in STEP
7 (TIA Portal) for a function in the S7-1200/S7-1500 CPU?
https://support.industry.siemens.com/cs/ww/en/view/99412890

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 46

https://support.industry.siemens.com/cs/ww/en/view/99412890

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.2 Program blocks
3.2.3 Function blocks (FB)

Figure 3-6: “Add new block” dialog (FB)
“Add new block X

MName:
[Block_1 |

Organiztion
block

ko [+
=S

() manual

(%) et

=

Function blocks are code blocks that store thei entlyin instance dats blocks,

irvalues perman
Function bleck so thatthey remain available after the block has been executed.

mare...

> | Additional information

Y-

FBs are blocks with cyclic data storage, in which values are permanently stored.
The cyclic data storage is realized in an instance DB.

Figure 3-7: Calling a function block

"InstTransporiBelt B~ || Instance DB

"EngineControl®

EM ENO ——
50.0 — speed Call of a function block in the block
10.0 — acceleration editor

0 — error

Properties
e FBs are blocks with cyclic data storage.

e Temporary tags are undefined when called in non-optimized blocks. In
optimized blocks, the values are always preset with the default value (S7-1500
and S7-1200 firmware V4). Thus, the resulting behavior is not accidental but
reproducible.

e Static tags keep the value from cycle to cycle

Recommendation

e Use the function blocks in order to create subprograms and structure the user
program. A function block can also be called several times in different locations
of the user program. This makes programming of frequently recurring program
parts easier.

e If function blocks are applied multiply in the user program, use separate
instances, preferably multi-instances.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 47

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.2 Program blocks

3.24 Instances

The call of a function block is called instance. The data with which the instance is
working is saved in an instance DB.

Instance DBs are always created according to the specifications in the FB interface
and can therefore not be changed in the instance DB.

Figure 3-8: Structure of the interfaces of an FB

MName Data type

* Input | =

L] execute Bool

= mode Bool

L] initialValue Variant
= resetBuffer Bool

* Output

L] done Bool

<

T

<

T

<

<

€ Input
enl L] error Bool OUtpU'[
“ope statusID Uint InOut
enl L] status Wiord

<O = InOut Static
<= itern Variant

a0 I buffer Variant

<] = Static

a0 I statEdgeupm Bool

L. statFirstitemindex Int

<= statMextEmptyitemin... Int

<4l v Temp

4] = tempEdgeup Bool

- = temnpinternalError Int

4] = tempMewFirstitemindes Int

The instance DB consists of a permanent memory with the interfaces input, output,
InOut and static. Temporary tags are stored in a volatile memory (L stack). The L
stack is always only valid for the current processing. |.e. temporary tags have to be
initialized in each cycle.

Properties
¢ Instance DBs are always assigned to a FB.

e Instance DBs do not have to be created manually in the TIA Portal and are
created automatically when calling an FB.

e The structure of the instance DB is specified in the appropriate FB and can
only be changed there.

Recommendation

e Program it in a way so that the data of the instance DB can only be changed by
the appropriate FB. This is how you can guarantee that the block can be used
universally in all kinds of projects.

For more information, please refer to chapter 3.4.1 Block interfaces as data
exchange.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 48

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.2 Program

3.2.5

Advantages

Properties

blocks
Multi-instances

With multi-instances called function blocks can store their data in the instance data
block of the called function block. This means, if another function block is called in
a function block, it saves its data in the instance DB of the higher-level FBs. The
functionality of the called block is thus maintained even when the calling block is
transferred.

The following figure shows an FB that uses another FB (“IEC Timer”). All data is
saved in a multi instance DB. It is thus possible to create a block with an
independent time behavior, for example, a clock generator.

Figure 3-9: Multi-instances

MName Data type
@~ input -
. frequency Real MU|tI-InStance DB
<= pulsePsuseRatio Real
<@ * Output
<= clock Boal
= countdown Tirne
<@ » InOut
Switch-off <@ > Static
s ~ instToflimePulse TOF_TIME
a . e T
- . ET Time TOF_TIME
< L IN Bool
- - Q Bool

e Reusability

e Multiple calls are possible

e Clearer program with fewer instance DBs

e Simple copying of programs

e Good options for structuring during programming

e Multi-instances are memory areas within instance DBs.

Recommendation

Example

Programming G

Use multi-instances in order to ...

e reduce the number of instance DBs.

e create reusable and clear user programs.

e program local functions, for example, timer, counter, edge evaluation.

If you require the time and counter function, use the “IEC Timer” blocks and the
“IEC Counter” blocks instead of the absolutely addressed SIMATIC Timer. If
possible, also always use multi-instances here. Thus, the number of blocks in the
user program is kept low.

uideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5, 03/2017 49

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.2 Program blocks

Figure 3-10: Library of the IEC Timer

~ [@| Timer operations

E iy Generate pulse

3 TON Generate on-delay

& TOF Generate offdelay

3 TONR Time accumulator

—TP]- Start pulse timer

—TON]- Start on-delaytimer

—TOF]- Start off-delay timer

—[TOMR]- Time accumulator

—[RT]- Reset timer

=T PTI- Load time duration

¥ [7] Legacy
S_PULSE Assign pulse timer parameters and start
S_PEXT Assign extended pulse timer parameters and start
5_0DT Assign on-delay timer parameters and start
5_0DTs Assign retentive on-delay timer parameters and start
S_COFFDT Assign offdelay timer parameters and start
—5P] Start pulse timer
—5E] Start extended pulse timer
—s0] Start on-delaytimer
—-155] Start retentive on-delay timer
—{5F] Start off-delay timer
Note More information can be found in the following entries:

How do you declare the timers and counters for the S7-1500 in STEP 7 (TIA
Portal)?
https://support.industry.siemens.com/cs/ww/en/view/67585220

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

https://support.industry.siemens.com/cs/ww/en/view/67585220

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.2 Program blocks

3.2.6 Transferring instance as parameters (V14)

Instances of called blocks can be defined as InOut parameters.

Advantages

e |tis possible to create standardized functions whose dynamic instances are

trans

e Only when calling the block it is specified what instance is used.

Example

ferred.

Figure 3-11: Transferring instance as parameter

Call options

single

Nulti

H MName in the interface

Ifyou call the function block as a parameter instance, the
function block saves its data in the instance you specify as
block parameter and not in the instance of the called block.This
gives you the option of defining the instance for this FE call

instance

!

instance

Parameter instance

|instlIECCountert =

during runtime.

Faramet

-r%—r
B

instance

er

mare...

0K 1 | Cancel

FunctionBlock

MName Data type
1 <l » Input
2 A b Outnut
3 < ™ InOut
4 f<mf= » instECCounter CTU_INT
35 ———
6 €0 v Static
7 statCount Bool
8 statWalue Int
9 <Add news
10 Temp

CASE... FOR... WHILE..

.
OF.. TODO.. DO.. (*...%) REGION

“FunctionBlock™
false — inputl
"Global®.
counterFaram instIECCounter |«

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017

#instIECCounter (CU:=¢#statCount,
FV:=§statValus);

51

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.2 Program blocks

3.2.7 Global data blocks (DB)
Figure 3-12: “Add new block” dialog (DB)
‘:::E.h\n(ki |
T we
*; Languag N
Orgonimtion || pumber
O manual
@ automatic
x5

Functien block Descri iption:
ks (DBs) are data areas in the user program which contain userdata.

Data block

more...

> | Additional information

9 s rewand spen

Variable data is located in data blocks that are available to the entire user progra
Figure 3-13: Global DB as central data memory

B U
~m

Advantages

e Well-structured memory area
e High access speed

Properties
e All blocks in the user program can access global DBs.
e The structure of the global DBs can be arbitrarily made up of all data types.
e Global DBs are either created via the program editor or according to a

m.

previously created “user-defined PLC data type" (see chapter 3.6.4 STRUCT

data type and PLC data types).

e A maximum of 256 structured tags (ARRAY, STRUCT) can be defined. This
does not apply to tags that are derived from a PLC-data type.

Recommendation

e Use the global DBs when data is used in different program parts or blocks.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

52

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.2 Program blocks

More information can be found in the following entry:

How is the declaration table for global data blocks structured in STEP 7 (TIA

https://support.industry.siemens.com/cs/ww/en/view/68015630

Downloading without reinitialisation

In order to change user programs that already run in a controller, S7-1200
(firmware V4.0) and S7-1500 controllers offer the option to expand the interfaces of
optimized function or data blocks during operation. You can load the changed
blocks without setting the controller to STOP and without influencing the actual
values of already loaded tags.

Figure 3-14: Load without reiniti

451

alization

Block
in project

Name

variablel

variable2

variable3

O

variable4

variablel 3.4
variable2 451
| variable3 23
variable4 0

variable5

variable5 0 '

Execute the following steps whilst the controller is in RUN mode.
1. Enable “Downloading without reinitialisation”

2. Insert newly defined tags in existing block
3. Load block into controller

¢ Reloading of newly defined tags without interrupting the running process. The
controller stays in “RUN” mode.

Note
Portal)?
3.2.8
variablel
variable2
variable3
Advantages
Properties

e Downloading without reinitiatialization is only possible for optimized blocks.

e The newly defined tags are initialized. The existing tags keep their current

value.

e A Dblock with reserve requires more memory space in the controller.

e The memory reserve depends on the work memory of the controller; however,

it is max. 2 MB.

e Itis assumed that a memory reserve has been defined for block.

e By default, the memory reserve is set to 100 byte.

e The memory reserve is defined individually for every block.

e The blocks can be variably expanded.

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017

53

https://support.industry.siemens.com/cs/ww/de/view/68015630

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.2 Program blocks

Recommendation

o Define a memory reserve for blocks that are to be expanded during

commissioning (e.g. test blocks). The commissioning process is not disturbed

by a download since the actual values of the existing tags remain.

Example: Stetting memory reserve ont

The following table describes how you can set the memory reserve for the

he block

downloading without reinitializing.

Table 3-3: Setting memory re

serve

Step

Instruction

= ';:L Pragram blocks
ﬁ“ Add new block
| Main [OB1]
[£z] BasicPLCSettings
& LGF_FIFO [FB1
I: LGF_Frequenc
4 LGF_FulseRela

1. Right-click any optimized block in the project tree and select “Properties”.

0017]
y [FB10024]
y [FB10027]

@ Building [DES]
i InstLGF_Fuls
@ instLGF_Set
@ InsTLGF_Timer:
Communication

PrintSerial

7 @ &

tz| Transport

b g Systern blocks
[Technology objects
[1-1 Energy objects
External source files
I:a FLC tags
E—u PLC data types

i Online backups
':.F Traces

* v rF ¥ v v wv v w

[{§, Device proxy data
E'i Program info

C.f PLC supervisions & al
[}

4 LGF_TimerSwitch [FE10002]

U8 ;;;l;;

[z Watch and force tablef *"r

_ :
! Open

Copy as text
% Delete Del
Rename F2
Compile 4
Download to device »
ﬂ Go online Ctrl+k
N Go offline ctrl+ I

&Y Go offine carl+

v

o
L

Copysnapshots to start values]
_h Search in project Ctrl+F

gl-) Generate source from blocks

stails view

X Cross-references F11

X Cross-reference information Shift+F11
k| Call structure

mne
fanSpeedi
Temperaturel
Light1
fanSpeed2
Temperature2

- (=]

i Assignment list

Switch programming language]
Know-how protection

= Frint... Cirl+P
2 Print preview...

=] Properties__“‘ Alt+Enter

€

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

54

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.2 Program blocks

Step Instruction
2. Building [DB6] X
Time stamps
Cump\\au;’\ Memoryreserve: [100 \ Bytes | (100 bytes available)
Protection \
Topecton N 0O E:(Ewad without reinitialization for
Download without reinitialization | Retentive memory reserve p): | (0byes available)
B)
=4
o
\ W
G
<
Click “Download without reinitialization”.
3. Enter the desired memory reserve for “Memory reserve”.
4. Confirm with “OK”.
Note You can also set a default value for the size of the memory reserve for new

blocks in the TIA portal.

In the menu bar, navigate to "Options — Settings" and then to "PLC programming
— General — Download without reinitialization".

Example: Downloading without reinitialisation

The following example displays how to download without reinitialization.

Table 3-4 Load without reinitialization

Step Instruction
1. Prerequisite: a memory reserve has to be set (see above)
2. Open, e.g. an optimized global DB.
3. Click the “Activate memory reserve” button and confirm the dialog with “OK”.

= _%'é o, E,E T Keepactualvalues [ga Snapshot ;‘5[‘

Building @
Name Data type Star\._/ Retain

1 @[~ Static | =
2 |4j = fanspeedl Real 0.0 =
3 = ternperature 1 Real 0.0 E
4 |4qj = light Bool false =
5 <= fanspeed2 Real 0.0 E
6 | = termnperature2 Real 0.0 =]
J . light2 Boaol alse E
Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 55

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.2 Program blocks

Step Instruction

4. Add a new tag (retentive tags are also possible).

=5 = M, B E= "7 keepactwalvalues [gg Snapshot i,
Building
Name Data type Startvalue Retain

1 <@ = Static
2 |4 = fanspeedi Real M
3 4w temperaturel Real D
4 |qn = light? Boal (|
5 4j = fanspeed2 Real M
6 |41 = temperature2 Real D
7 |40 = light2 Boal (|
8 |4i = fanspeed3 Real M
9 4= temperature3 Real D
10 |4 = light3 Boal (|
11]aq = testvalue Bool [
12|@ L testialueRetain Bool =)

5. Download the block to the controller.

6. Result:
e Actual values of the block remain

Note Further information can be found in the online help of the TIA Portal under

“Loading block extensions without reinitialization”.

For further information, refer to the following entry:

How is the declaration table for global data blocks structured in STEP 7-1500
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/68015630

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017

56

https://support.industry.siemens.com/cs/ww/de/view/68015630

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.2 Program blocks

3.2.9 Reusability of blocks

The block concept offers you a number of options to program in a structured and
effective way.

Advantages

e Blocks can be used universally in any location of the user program.
e Blocks can be used universally in different projects.

e When every block receives an independent task, a clear and well-structured
user program is automatically created.

e There are clearly fewer sources of errors.
e Simple error diagnostic possible.

Recommendation
If you want to reuse the block, please note the following recommendations:

e Always look at blocks as encapsulated functions. l.e. each block represents a
completed partial task within the entire user program.

e Use several cyclic Main OBs to group the plant parts.

¢ Always execute a data exchange between the blocks via its interfaces and not
via its instances (chapter 3.4.1 Block interfaces as data exchange).

e Do not use project-specific data and avoid the following block contents:
- Access to global DBs and use of single-instance DBs
- Access to tags
- Access to global constants

¢ Reusable blocks have the same requirements as know-how-protected blocks
in libraries. This is why you have to check the blocks for reusability based on
the “Multiple instance capability” block property. Compile the block before the
check.

Figure 3-15: Block attributes

Attributes

[]IEC check
[] Handle errors within block
[set ENO automatically

@ Optimized block access

Im Multiple instance capabilityl

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 57

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.2 Program blocks

3.2.10 Auto numbering of blocks

For internal processing, required block numbers are automatically assigned by the
system (setting in the block properties).

Figure 3-16: Auto numbering of blocks

Devices
-]

Project tree

> [qviza
B Add new device
oy Devices & networks

Devices
EXY) 2

~ [Fw1s [CPU 1516-3 PrjLy n
. Project tree
Y Device configuration

= [Jwvi3a =
r% Online & diagnostics B Add new device Devices
Erliapnlbiocks iy Devices & networks HQe

B Add new block
4 Main [0B1]
4B FIFOQueue [FB4]

~ [FWI5 [CPU 1516-3 PN/DFP]

IIf pevice configuration || . [Tviza

B Add new device
g Devices & netwaorks
~ [l Fw15 [CPU 1516-3 PN/DP]
[IY Device configurstion
.| Online & diagnostics
« [l Program blocks
F Add new block

=& \ein [0B1]
Copy and paste < FIFOQueue [FB4]
C

. B E-BFIFOQueue_1 [FB1]
onfict with same block number

| Online & diagnostics
~ gl Frogram blacks
¢ ~dd new black
4 Main [OB1]
4 FIFOQueue [FB4]
E -XFIFOQueue_i [FB4

e System solves the conflict with
compiling the project. Block gets next
free number autmatically.

Advantages
e Conflicting block numbers, e.g. as a result of copying, automatically deletes the
TIA Portal during compilation.
Recommendation

e Leave the existing setting "Automatic" unchanged.
Figure 3-17: Setting in the block

LGF_Frequency [FBTO024] [LGF_Frequency V' 1.1.2] X

E General]‘ FB supervision definitions |

General

Information General

Time stamps

s Mame: |LGF_Frequenc)' ‘
Frotection e [‘
Attributes

Download without reinitialization Language: |SCL B

Number: | 10024
() Manual

(&) Automatic

(L w] [J

oK 1 cancel |

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 58

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.3 Block interface types

3.3 Block interface types

FBs and FCs have three different interface types: In, InOut and Out. Via these
interface types the blocks are provided with parameters. The parameters are
processed and output again in the block. InOut parameters serve for the transfer of
data to the called block as well as the return of results. There are two different
options for the parameter transfer of data.

3.3.1 Call-by-value

When calling the block, the value of the actual parameter is copied onto the formal
parameter of the block. For this, an additional memory in the called block is
provided.

Figure 3-18: Transfer of the value

,mylnt”
value: 31

Properties

e Each block displays the same behavior as the transferred parameters
e Values are copied when calling the block

3.3.2 Call-by-reference

When calling the block, a reference is transferred to the address of the actual
parameter. For this, no additional memory is required.

Figure 3-19: Referencing the actual parameter (pointer to data storage of the parameter)

,myString”
velue: 'test’

Properties

e Each block displays the same behavior as the referenced parameters.

e Actual parameters are referenced when the block is called, i.e. with the access,
the values of the actual parameter are directly read or written.

Recommendation

e Generally use the InOut interface type for structured tags (e.g. of the ARRAY,
STRUCT, STRING, type...) in order to avoid enlarging the required data
memory unnecessarily.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 59

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.4 Memory concept

3.3.3 Overview for transfer of parameters

The following table gives a summarized overview of how S7-1200/1500 block
parameters with elementary or structured data types are transferred.

Table 3-5: Overview for transfer of parameters

Block type / formal parameter Elementary data Structured data
type type
FC Input Copy Reference
Output Copy Reference
InOut Copy Reference
FB Input Copy Copy
Output Copy Copy
InOut Copy Reference
Note When optimized data with the property “non-optimized access" is transferred

when calling the block, it is generally transferred as copy. When the block
contains many structured parameters this can quickly lead to the temporary
storage area (local data stack) of the block to overflow.

This can be avoided by setting the same access type for both blocks (chapter
2.6.5 Parameter transfer between blocks with optimized and non-optimized

access).

3.4 Memory concept

For STEP 7 there is generally the difference between the global and local memory
area. The global memory area is available for each block in the user program. The

local memory area is only available within the respective block.

34.1 Block interfaces as data exchange

If you are encapsulating the functions and program the data exchange between the

blocks only via the interfaces, you will clearly have advantages.

Advantages

e Program can be made up modularly from ready blocks with partial tasks.

e Program is easy to expand and maintain.

e Program code is easier to read and test since there are no hidden cross
accesses.

Recommendation

e If possible, only use local tags. Thus, you can use the blocks universally and in

a modular fashion.

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017

60

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.4 Memory

3.4.2

Advantages

Programming G

concept

e Use the data exchange via the block interfaces (In, Out, InOut), his guarantees
the reusability of the blocks.

e Only use the instance data blocks as local memory for the respective function
block. Other blocks should not be written into instance data blocks.

Figure 3-20: Avoiding access to instance data blocks

FB

Local

P
o

] - FB

Local

If only the block interfaces are used for the data exchange it can be ensured that
all blocks can be used independent from each other.

Figure 3-21: Block interfaces for data exchange

Y
: v

e FB

/ Local
FB

Local

Global memory

Memories are called global when they can be accessed from any location of the
user program. There are hardware-dependent memories (for example, bit memory,
times, counters, etc.) and global DBs. For hardware-dependent memory areas
there is the danger that the program may not be portable to any controller because
the areas there may already be used. This is why you should use global DBs
instead of hardware-dependent memory areas.

e User programs can be used universally and independent from the hardware.

e The user program can be modularly configured without having to divide bit
memory areas for different users.

e Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized for reasons of compatibility.

uideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5, 03/2017 61

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.4 Memory concept

Recommendation

e Do not use any bit memory and use global DBs instead.

e Avoid hardware-dependent memory, such as, for example, clock memory or
counter. Use the IEC counter and timer in connection with multi-instances
instead (chapter 3.2.5 Multi-instances). The IEC timers can be found in
“Instructions — Basic Instructions — Timer operations”.

Figure 3-22: IEC timers

~ [@] Timer operations

& T Generate pulse
4 TON Generate on-delay
4 TOF Generate off-delay
4 TONR Time accumulator
=1 {TP]- Start pulse timer
T -[Ton]- start on-delay timer
=N [ToF]- Start offdelay timer
£l -[ToNR]- Time accumulator
&=T -[RT1- Reset timer
&= -[PT]- Load time duration
343 Local memory

e Static tags
e Temporary tags

Recommendation
e Use the static tags if the values are required in the next cycle.

e Use the temporary tags as intermediate memory in the current cycle. The
access time for temporary tags is shorter than for static ones.

e If an Input/Output tags is accessed very frequently, use a temporary tag as
intermediate memory to save runtime.

Note Optimized blocks: Temporary tags are initialized in each block call with the
default value (S7-1500 / S7-1200 firmware V4 or higher).
Non-optimized blocks: Temporary tags are undefined for each call of the block.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

62

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.4 Memory concept

344 Access speed of memory areas

STEP 7 offers different options of memory access. For system-related reasons
there are faster and slower accesses to different memory areas.

Figure 3-23: Different memory access

Access speed . fast O intermediate . slow
Non-structured Name Data type Default value Retain
elementary data type FC lpuk
parameter .‘ﬁl b Output Retain tags .
< b InOut
4l v Static
Non-retain tags statMonRetain Tags [PLC data type] NonTetain
.ﬂ L] statRetain Retain
s statsetinDB Int o Setin IDB
Temporary tags | g 4= » statAray . Array[0.9] of Int Non-retain
~ Temp E‘
6@ u tempVariable Word
L

[<] 1

¥ Block title: ...

- ¥ Network1: ..
Indexed accesses with
runtime tindex @ L #3tathrray["indexsdhcocess™]

OFN DB [#tempVariable]

[

}

[iiii|

Accesses to checks for at
runtime require
(register, indirect and
indirect DB accesses)

L OW ["indirecthccess™]

TART

O ptimized Standard
Mame Data type Copying between opt|m|zed Name Data type | Offset
4~ Static and non-optimized blocks /o'~ cearic

4= optimizedvaraible Int

4] = standardVariable Int 0.0

Access to non-optimized

Access to optimized DBs
P blocks

Fastest access in the S7-1200/1500 in descending order

1. Optimized blocks: Temporary tags, parameters of an FC and FB, non-retentive
static tags, tags [PLC data type]

2. Optimized blocks whose access for compiling is known:

- Retentive FB tags

- Optimized global DBs
3. Access to non-optimized blocks

Indexed accesses with index that was calculated at runtime (e.g. Motor [i])
5. Accesses that require checks at runtime

- Accesses to DBs that are created at runtime or which were opened
indirectly (e.g. OPN DB[i])

- Register access or indirect memory access

6. Copying of structures between optimized and non-optimized blocks (apart from
Array of Bytes)

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 63

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.5 Retentivity

3.5

Advantages

Properties

Retentivity

In the event of a failure of the power supply, the controller copies the retentive data
with its buffer energy from the controller’'s work memory to a non-volatile memory.
After restarting the controller, the program processing is resumed with the retentive
data. Depending on the controller, the data volume for retentivity has different

sizes.

Table 3-6: Retentive memory for S7-1200/1500

Usable retentive memory for bit memory,

Controller times, counters, DBs and technology
objects
CPU 1211C,1212C, 1214C, 1215C, 1217C 10 kByte
CPU 1511-1 PN 88 kByte
CPU 1513-1 PN 88 kByte
CPU 1515-2 PN, CPU 1516-3 PN/DP 472 kByte
CPU 1518-4 PN/DP 768 kByte
Table 3-7: Differences of S7-1200 and S7-1500
S7-1200 S7-1500

Retentivity can only be set for bit memory

Retentivity can be set for bit memory, times
and counters

¢ Retentive data maintains its value when the controller goes to STOP and back
to RUN or in the event of power failure and a restart of the controller.

For elementary tags of an optimized DB the retentivity can be set separately. Non-
optimized data blocks can only be defined completely retentive or non-retentive.

Retentive data can be deleted with the actions "memory reset" or "Reset to factory

settings" via:

e Operating switch on the controller (MRES)

e Display of the controller
e Online via STEP 7 (TIA Portal)

Recommendation

e Do not use the setting “Set in IDB”. Always set the retentive data in the function
block and not in the instance data block.
The “Set in IDB” setting increases the processing time of the program
sequence. Always either select “Non-retain” or “Retain” for the interfaces in the

FB.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

64

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.5 Retentivity

Figure 3-24: Program editor (Functions block interfaces)

¥ Static
& » instToflimeFPulse

= b instToflimePause

= statFrequency
L ctatTimePeriod
= statTimePulse

ToF_... &
TOF_TIME

Real 0.0
Time T#Oms
Time #0ms

Figure 3-25: Program editor (data block)

Building

Mame Data type | Start value
4| > Static | =]
4] = fanspeed? Real 0.0
4] = temperature1 Real 0.0
4] = light1 Bool false
4] = fanSpeed2 Real 0.0
4] = temperature2 Real 0.0
< = light2 Bool false
4] = fanSpeed3 Real 0.0
4] = temperature3 Real 0.0
4] = light3 Bool false

Example: Retentive PLC tags

Non-retain

Retain
Setin IDB

T

Non-retain

Retain

®0

NRORNEEOD

Accessiblef...

KX

NENOENEEE

The setting of the retentive data is performed in the tables of the PLC tags, function
blocks and data blocks.

Figure 3-26: Setting of the retentive tags in the table of PLC tags

% = % [an]
PLC tags

Mame
activateLeft

activateRight

Retain memaory

NN

Tag table Dsta type
Default tag table E Bool
Default tag table Bool

Number of memory bytes starting at MBO:
Mumber of SIMATIC timers starting at TO: _
Number of SIMATIC counters starting at C0: D
Currently available retain memory (bytes):

Address

%I0.0

%I0.1

’ oK 1 | Cancel |

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5, 03/2017

Retentivity can be set from
address 0 onward!
e.g. from MBO, TO or CO

65

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.5 Retentivity

Example: Retentive counter

You can also declare instances of functions (timer, counter, etc.) retentive. As
already described in chapter 3.2.5 Multi-instances, you should always program
such functions as multi-instance.

Figure 3-27: Retentive counter as multi-instance

4 4@ * Static
5 < = ¥ InstPackageCounter CTU_INT Retain -
6 |41 . cu Bool false
Elee Retain
7 < L) cD Bool alse
8 |<ad - R Bool false
9 < - LD Bool false Retain
10 <43 = Qu Bool false Retain
<]
b Block title:
¥ Network 1: ...
#InstPackageCou
nter
CcTu
Int
#statCountSignal — cu gotatCurrentCoun
falce — R oy — tervalue
50 Py Q—
Note If the retentive memory on the PLC is not sufficient, it is possible to store data in

the form of data blocks that are only located in the load memory of the PLC. The
following entry is described by taking the example of an S7-1200. This
programming also works for S7-1500.

More information can be found in the following entries:

How do you configure data blocks in STEP 7 (TIA Portal) with the "Only store in
load memory" attribute for a S7-12007?
https://support.industry.siemens.com/cs/ww/en/view/53034113

Using Recipe Functions for persistent Data with SIMATIC S7-1200 and S7-1500
https://support.industry.siemens.com/cs/ww/en/view/109479727

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 66

https://support.industry.siemens.com/cs/ww/en/view/53034113
https://support.industry.siemens.com/cs/ww/en/view/109479727

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.6 Symbolic addressing

3.6 Symbolic addressing

3.6.1 Symbolic instead of absolute addressing

The TIA Portal is optimized for symbolic programming. This results in many

advantages. Due to symbolic addressing, you can program without having to pay

attention to the internal data storage. The controller handles where the best

possible storage is for the data. You can therefore completely concentrate on the
solution for your application task.

Advantages

e Easier to read programs through symbolic tag names

e Automatic update of tag names at all usage locations in the user program

e Memory storage of the program data does not have to be manually managed
(absolute addressing)

e Powerful data access

¢ No manual optimization for performance or program size reasons required

e Auto-complete for fast symbol input

e Fewer program errors due to type safety (validity of data types is checked for
all accesses)

Recommendation

e “Don’t worry about the storage of the data”

e “Think” symbolically. Enter the “descriptive” name for each function, tag or
data, such as, for example, Pump_boiler_1, heater_room_4, etc. Thus a
created program can be simply read, without requiring many comments.

e Give all the tags used a direct symbolic name and define them afterwards with
a right-click.

Example

Table 3-8: Example for creating symbolic tags

Step

Instruction

1.

Open the program editor and open any block.

Enter a symbolic name directly at the input of an instruction.

#InstErrorheszag
e

TMAIL_C
DONE — -
BUSY — .-
TEXT ERROR — -
MAIL_ADDR_ ELRIE
< PARAM - END —

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017

67

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.6 Symbolic addressing

Step Instruction
3. Right-click next to the block and select “Define tag...” in the context menu.
#InstErrarldessag
e @ W Define tag...
TMAIL_C __/ .
..—EN
fal:e — REQ
statMai! T0_S DOMNE = -
<7 SUBJECT BUSY — - -
TEXT ERROR — - De
MAIL_ADDR_ STATUS ,
<177 — PARAM v ENO — Cross—reference information ShifteF11
Compile
Download to device
(3 Insert netwark Ctrl+R
Insert STL network
Insert SCL network
Insert empty box Shift+F5
4, Define the tag.

Define tag

Name Section Address Data type | PLC tag table Comment

stathail | Local Static vl string E Iz‘
Local In
Local Out @ | | Define | | Cancel
Local InOut

Local Static
Local Temp
Global Memary
Global Input

Global Output

There is an elegant method to save time, if you want to define several tags in a
network. First of all, assign all tag names. Then define all tags at the same time
with the dialog of step 4.

Note More information can be found in the following entry:

What are the advantages of using symbolic addressing for S7-1500 in STEP 7
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/67598995

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 68

https://support.industry.siemens.com/cs/ww/en/view/67598995

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.6 Symbolic addressing

3.6.2 ARRAY data type and indirect field accesses

The ARRAY data type represents a data structure which is made up of several
elements of a data type. The ARRAY data type is suitable, for example, for the
storage of recipes, material tracking in a queue, cyclic process acquisition,
protocaols, etc.

Figure 3-28: ARRAY with 10 elements of the Integer (INT) data type

MName Data type
<0 = ~ statArray Array]0.9] ofInt || n
< s statArray[0] Int
< s statArray[1] Int
- s statArray[2] Int
< s statArray[3] Int
< s statArray[4] Int
- s statArray[5] Int
< s statArray[6] Int
< s statArray[7] Int
- s statArray[8] Int
< s statArray[9] Int

You can indirectly access individual elements in the ARRAY with an index (array

[“index”]).

Figure 3-29: Indirect field access

KOP / FUP: SCL:
BENE 1 #statField := #stathrray[#statIndex];
~-=——EN —J
#statArray[#statin *LOUH #statField
dex] I -

Advantages
e Easy access through ARRAY index
e No complicated pointer creation required
e Fast creation and expansion possible
e Useable in all programming languages

Properties
e Structured data type
e Data structure made of fixed nhumber of elements of the same data type
e ARRAYSs can also be created multi-dimensional

e Possible indirect access with runtime tag with dynamic index calculation at
runtime

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

69

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.6 Symbolic addressing

Recommendation

e Use ARRAY for indexed accesses instead of pointer (e.g. ANY pointer). This
makes it easier to read the program since an ARRAY is more meaningful with
a symbolic name than a pointer in a memory area.

e Asrun tag use the DINT data type as temporary tag for highest performance.
e Use the “MOVE_BLK” instruction to copy parts of an ARRAY into another one.
e Use the “GET_ERR_ID” instruction to catch access errors within the Array.

Note More information can be found in the following entries:

How do you implement an array access with an S7-1500 with variable index?
https://support.industry.siemens.com/cs/ww/en/view/6 7598676

How do you address securely and indirectly in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/97552147

In STEP 7 (TIA Portal), how do you transfer S7-1500 data between two tags of
the data types "Array of Bool" and "Word"?
https://support.industry.siemens.com/cs/ww/en/view/108999241

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 70

https://support.industry.siemens.com/cs/ww/en/view/67598676
https://support.industry.siemens.com/cs/ww/en/view/97552147
https://support.industry.siemens.com/cs/ww/en/view/108999241

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.6 Symbolic addressing

3.6.3 Formal parameter Array [*] (V14 or higher)

With the formal parameter Array [*], arrays with variable length can be transferred
to functions and function blocks.

With the instructions “LOWER_BOUND” and “UPPER_BOUND?” the array limits
can be determined.

Advantages

e Blocks that can process the flexible arrays with different lengths

e Optimum readability due to fully-symbolic programming

e No pointer programming for arrays of different lengths necessary anymore
Example

Figure 3-30:Initializing different arrays

Main

Marne Data type

1 <@ » Input
2 @ v Temp
3 mje ¢ tempArrayl Array[0..125] of Real
4
5

<Ij= » tempAray? Array[10..80] of Real
<0 P Lonstant

HF |[diF —0— {7 = 2

» Block title: “Main Program Sweep (Cycle)”

- Network 1: Arrayinitialization

TnitArray”
[e EM EMO
quantityArray
TnitArray”
[p—— EM EMO
I #tempArray2 I quantityArray
InitArray
MNarme Data type Default value
1 <@ » Input
2 4l » Output
3 |40 * InOut
4 4l|= P quantityfrray Array[*] of Real
5 -« > Temp
6 4= templower Dint
7 |- templpper Dint
T count Dint
IF.. CpSE.. FOR. WHLE- (o & mEcion
#$templower := LOWER_BOUND (ARR := #quantityRrray, DIM := 1);
#$templpper := UPPER_BOUND (ARR := #quantityhrras =1);

#quantityhArray[#count] := 0.0;

FOR #count := #templower IO #cemplUpper DO
END FCR;

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 71

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.6 Symbolic addressing

3.64 STRUCT data type and PLC data types

The STRUCT data type represents a data structure which is made up of elements
of different data types. The declaration of a structure is performed in the respective
block.

Figure 3-31: Structure with elements with different data types

Name Data type Defaultvalue

<0 = ¥ statEngineData Struct

< B ¥ power Struct

- = maxpower It 1000

< Ll cosPhi Real 0.89
L <Add news

< 8 ¥ gutputValues | Struct

< s voltage Real 0.0

< Ll current Real 0.0

< Ll frequency Real 0.0
= <Add news

In comparison to structures, PLC data types are defined across the controller in the
TIA Portal and can be centrally changed. All usage locations are automatically
updated.

PLC data types are declared in the “PLC data types” folder in the project navigation
before being used.

Figure 3-32: PLC data types
typeEngineData

Name Data type Default value
7 PregrammingGuideline Z 1 <@ ~ power struct
ﬁ)‘-.dd new device |z as= maxpower Int 1000
gy Devices & networks ERE T cosPhi Real 0.89
'p_[. TransportBelt [CPU 1511-1_. 4 @ v outputValues Struct
I} Device configuration 5 4] = voltage Real 0.0
) Online & diagnostics 6 4] = current Real 0.0
_r:i:; Program blocks 7 4] = frequency Real 0.0
[Technology objects =18 <Add news e

External source files

]
b
» 3 Energy objects
»
v [Pl tanc

A Tﬂ PLC data types
B Add new data type
] typeEngineDats

Advantages

e Achange in a PLC data type is automatically updated in all usage locations in
the user program.

e Simple data exchange via block interfaces between several blocks

e In PLC data types STRING tags with defined length can be declared (e.g.,
String[20]). As of TIA V14 a global constant can also be used for the length
(e.g., String[LENGTH]).

If a STRING tag is declared without defined length, the tag has the maximum
length of 255 characters.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 72

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.6 Symbolic addressing

Properties

e PLC data types always end at WORD limits (see the figures below).
e Please consider this system property when ...

- using structures in I/O areas (see chapter 3.6.5 Access to I/O areas with
PLC data types).
- using frames with PLC data types for communication.

- using parameter records with PLC data types for 1/O.
- using non-optimized blocks and absolute addressing.

Figure 3-33: PLC data types always end at WORD limits
PLC datatype elements

Ar S a
varByteO
1. WORD
Defined size typeCustom varBytel
3 Bytes v
a
varByte2
v ' | 2. woRrD
' Acutal size | :
H 4 Bytes J :_ ________ : d
Figure 3-34: PLC data types on 1/O areas
PLC data type I/0 area
typeControlBelt z a 5 - -
Mame Data type

<4 beltleft Byte 3 ByteS
< beltMiddle Byte
< beltRight Byte

Tag of
PLC data type
General 10 tags H System constants ” Texts | \ /
Name e Address Name Type Address | Tag table | Comment mainBelt "tvpeControlBelt”)
<l b mainBelt |'typeControlBelt'I 00.0 Bool %Q00 [+] A& N) maingelt | maingelth...
<A News= ‘éj it Brnl =nn
I e Defined size 1 |
B]
3 Bytes 1
i o3 [} B
Bool %Q2.6 1 1
Bool Q27 1 []
Bool %03.0 b -
Bool %031 1
Boal %Q3.2 I| I
el Acutal size| |} |
ool
Bool 4 Bytes II I
Boal %Q3.6 1
Bool %Q3.7 v [] I
_— e = o

Recommendation

e Use the PLC data types to summarize several associated data, such as, e.g.
frames or motor data (setpoint, speed, rotational direction, temperature, etc.)

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 73

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.6 Symbolic addressing

Note

Always use PLC data types instead of structures for the multiple uses in the
user program.

Use the PLC data types for structuring into data blocks.

Use the PLC data types in order to specify a structure for a data block. The
PLC data type can be used for any number of DBs. You can easily and
conveniently create any number of DBs of the same structure and adjust them
centrally on the PLC data type.

More information can be found in the following entries:

Libraries with PLC data types (LPD) for STEP 7 (TIA Portal) and S7-1200 / S7-
1500

https://support.industry.siemens.com/cs/ww/en/view/109482396

How do you initialize structures into optimized memory areas for the S7-1500
STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/78678760

How do you create a PLC data type for an S7-1500 controller?
https://support.industry.siemens.com/cs/ww/en/view/67599090

In STEP 7 (TIA Portal), how do you apply your own data types (UDT)?
https://support.industry.siemens.com/cs/ww/en/view/67582844

Why should whole structures instead of many single components be transferred
for the S7-1500 when a block is called?
https://support.industry.siemens.com/cs/ww/en/view/67585079

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 74

https://support.industry.siemens.com/cs/ww/en/view/109482396
https://support.industry.siemens.com/cs/ww/en/view/78678760
https://support.industry.siemens.com/cs/ww/en/view/67599090
https://support.industry.siemens.com/cs/ww/en/view/67582844
https://support.industry.siemens.com/cs/ww/en/view/67585079

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.6 Symbolic addressing

3.6.5 Access to I/O areas with PLC data types

With S7-1500 controllers, you can create PLC data types and use them for
structured and symbolic access to inputs and outputs.

Figure 3-35: Access to I/O areas with PLC data types

PLC data type
Name Data type Default value
< beltLeft Byte 16%0
AT beltMiddle Byte
< beltRight Byte

PLC tag
Marne Dat_a vpe
IP_ mainBelt “typeControlBelt”

| E

FB call FB interface
InsthMainBeltCont MainBeltControl

ral®

“MainBeltControl Name Data type
< b Input

- EN END
- . 6I * Qut t
IbeItConm:.I mainBelt I—J EEE

aij= ~ beltControl “typeControlBelt®
m L] beltLeft Byte
< . beltMiddle Byte

< L beltRiaht Byte

| » Inout |
<0 b Static

< b Temp

7. PLC data type with all required data

8. PLC tag of the type of the created PLC data type and start address of the I/O
data area (%Ix.0 or %Qx.0, e.g., %10.0, %Q12.0, ...)

9. Transfer of the PLC tag as actual parameter to the function block
10. Output of the function block is of the type of the created PLC data type

Advantages
e High programming efficiency
¢ Easy multiple usability thanks to PLC data types

Recommendation

e Use PLC data types for access to I/O areas, for example, to symbolically
receive and send drive telegrams.

Note Individual elements of a PLC data type of a tag can also be directly accessed in
the user program:

MOVE
EN —

1682387 = IN #heltControl.
st OUTI beltLeft

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5, 03/2017 75

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.6 Symbolic addressing
3.6.6 Slice access

For S7-1200/1500 controllers, you can access the memory area of tags of the Byte,
Word, DWord or LWord data type. The division of a memory area (e.g. byte or
word) into a smaller memory area (e.g. Bool) is also called slice. The figure below
displays the symbolic bit, byte and word accesses to the operands.

Figure 3-36:Symbolic bit, byte, word, DWord slice access

r
,myByteVariable| BYTE
Operands in =
Blocks, DBs und < ,myWordVariable* I': WORD
mlom- ! N
~.myDoubleWordVariable* DWORD
> i
i
~*~_ »myLongWordVariable* LWORD
\. 5o i
Examples
Slice access:,,myLongWordVariable.%D1“ »my_DoubleWordVariable.%W1“ ,,myWordVariable.%X0*
X XX X i i
&3 21710 Bit by bit
B7 B1 BO Byte by byte
w3 W1 W) Word by word
D1 DO Dword by
DWord

Advantages
e High programming efficiency
¢ No additional definition in the tag declaration required
e [Easy access (e.g. control bits)

Recommendation

e Use the slice access via AT construct rather than accessing certain data areas
in operands.

Note More information can be found in the following entry:

How in STEP 7 (TIA Portal) can you access the unstructured data types bit-by-
bit, byte-by-byte or word-by-word and symbolically?
https://support.industry.siemens.com/cs/ww/en/view/57374718

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 76

https://support.industry.siemens.com/cs/ww/en/view/57374718

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.6 Symbolic addressing

3.6.7 SCL networks in LAD and FBD (V14 and higher)

With SCL networks you can make calculations in LAD and FBD that can only be
programmed with considerable effort in LAD and FBD instructions.

Figure 3-37: Inserting SCL network

Eg) Copy Crrl+C

B Paste -y FcheckFeeder3

= 11
Define tag... Ctrl+Shift+l v
Rename tag... Ctri+Shift+T
Rewire tag... Crrl+Shift+P

% Delete Del

Crozs-reference information Shift4F11
Compile
Download to device

k;)% Insert netwark Ctrl+R
Insert STL network

Insert SCL network

Set network title automatically @

Network 2: Motor power data
SCL Metwork

f/ calculate the motor power data

#activePower := #3tatlU * gstatcl;

#realFower := #3tatlU * #statl * CO5(#3tatFhi);
#reactivePower = #3tatlU * #statl * SIN(#statPhi);

A

Advantages
e Time saving through efficient programming
e Clear code, thanks to symbolic programming

Properties

e Supports all SCL instructions
e Supports comments

Recommendation

e Use the SCL networks in LAD and FBD for mathematical calculations instead
of instructions, such as ADD, SUBB etc.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 77

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.7 Libraries

3.7 Libraries

With the TIA Portal you can establish independent libraries from different project
elements that can be easily reused.

Advantages

e Simple storage for the data configured in the TIA Portal:
- Complete devices (controller, HMI, drive, etc.)
- Blocks, tag tables, PLC data types, watch tables, etc.
- HMI screens, HMI tags, scripts, etc.

e Cross-project exchange via libraries

e Central update function of library elements

e Versioning of library elements

e Fewer error sources when using control blocks through system-supported
consideration of dependencies

Recommendations

e Create the master copies for easy reusability of blocks, hardware
configurations, HMI screens, etc.

e Create the types for the system-supported reusability of library elements:
- Versioning of blocks
- Central update function of all usage locations

e Use the global library for the exchange with other users or as central storage
for the simultaneous use of several users.

e Configure the storage location of your global library so it can automatically be
opened when starting the TIA Portal.
Further information is available at:
https://support.industry.siemens.com/cs/ww/en/view/100451450

Note More information can be found in the following entries:

Which elements of STEP 7 (TIA Portal) and WinCC (TIA Portal) can you store in
a library as Type or as Master Copy?
https://support.industry.siemens.com/cs/ww/en/view/109476862

How can you open a global library with write access rights in STEP 7 (TIA
Portal)?
https://support.industry.siemens.com/cs/ww/en/view/37364723

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 78

https://support.industry.siemens.com/cs/ww/en/view/100451450
https://support.industry.siemens.com/cs/ww/en/view/109476862
https://support.industry.siemens.com/cs/ww/en/view/37364723

Copyright © Siemens AG 2017 All rights reserved

3 General Programming
3.7 Libraries

3.7.1 Types of libraries and library elements

Generally there are two different types of libraries:
e "Project library"
e "Global library"

The content consists of two storage types each:
e '"Types"

e "Master Copies"

Figure 3-38: Libraries in the TIA Portal

Totally Integrated Automation

nineop e
S Ao & X - x D10 W LEOGAB S - LhA® PORTA

Options

s00 2 El Library view
1 v | Project library
EHEIE -
= Ll | Projectlibrary
& Add n!
- & FB1
AV 101
AV 1.00
A M‘Momr
IpV1.01

5V 100
i Copy of PLC_1
2 + | Global libraries |
oo Lo\ — A5 (¥ G 0 e

» LI Buttons-and-Switches
» L] Long Functions
~ TOataits view » LI Monitoring-snd-control-objects
» Ll Documentation templates
» L1 winAC_mP
L[l User_Lib_versions
- [Types
B Add new type
- & FB1
Ayv1.01
AV 1.00
A M‘Motor

> info (Project libeary)

(1) "Project library"
- Integrated in the project and managed with the project
- Allows the reusability within the project
(2) "Global library"
- Independent library
- Use within several projects possible
A library includes two different types of storage of library elements:
(3) "Master copies"

- Copies of configuration elements in the library (e.g. blocks, hardware, PLC
tag tables, etc.)

- Copies are not connected with the elements in the project.
- Master copies can also be made up several configuration elements.
(4) IITypeSII

- Types are connected with your usage locations in the project. When types
are changed, the usage locations in the project can be updated
automatically.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 79

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.7 Libraries

- Supported types are control blocks (FCs, FBs), PLC data types, HMI
screens, HMI faceplates, HMI UDT, scripts).

- Subordinate elements are automatically typified.
- Types are versioned: Changes can be made by creating a newer version.
- There can only be one version of a used type within a controller.

3.7.2 Type concept

The type concept allows the creation of standardized automation functions that you
can use in several plants or machines. The type concept supports you with
versioning and updating functions.

You can use types from the library in the user program. This offers the following
advantages:

Advantages

e Central update of all usage locations in the project
¢ Unwanted modifications of usage locations of types are not possible.

e The system guarantees that types always remain consistent by hindering
unwanted delete operations.

o If atype is deleted, all usage locations in the user program are deleted.

Properties

By using types you can make the changes centrally and update them in the
complete project.

Figure 3-39: Typifying with user libraries

Project 7o ~o User library
1 kS
~
. - ~) \.
Use . < = Ny Master copy without
Use @) typification

U
s Central update to

newer version

Update

Use V2 Typ V1
[\‘ with typification
Use V2

Typ V2
@

Use V2

e Types are always marked for better identification

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 80

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.7 Libraries

3.7.3

3.74

Differences between the typifiable objects for CPU and HMI

There are system-related differences between the typifiable objects for controllers

and HMI:

Table 3-9: Differences of types for controller and HMI

Controller

HMI

Subordinate control elements are typified.

Subordinate HMI elements are not typified.

Subordinate control elements are
instanced.

Subordinate HMI elements are not
instanced.

Control elements are edited in a test
environment.

HMI images and HMI scripts are edited in a
test environment. Faceplates and HMI -
UDTs are directly edited in the library
without test environment.

Further information on the handling of libraries can be found in the following

example.

Versioning of a block

Example: Creating atype

The following example shows you how the basic functions of the libraries are used

~ [TransportBelt [CPU 1511...
[I'f Device configuration
%/ Online & diagnostics
[r;i:. Program blocks

Later on this is the subordinate type.

with types.
Table 3-10: Creating a type
Step Instruction
1. Create a new PLC data type with “Add new data type” and create some tags.

v [Technology objects
» D;; Energy objects
] External source files
v [3 PLC tags
- fﬂ PLC data types

ﬁ Add new data type
il tvpeControlBelt

typeEngineData

b [tz System

typeEngineData

Mame Data type Defaultvalue
| v power Struct =
T maxpower Int 1000
= cosPhi Real 0.89
G|~ outputValues Struct
T voltage Real 0.0
5T current Real 0.0
j <] = frequency Real 0.0

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017

81

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.7 Libraries
Step Instruction
2. Create a new function block with “Add new Block”. This is the higher-level type.
~ [TransportBelt [CPU 1511 Add new block
[IT Device configuration Name: .7>
4/ online & diagnastics |Engine ‘)}
= ';:L Pr::gram blocks — o !}
B Add new block 2
i Main [OB1] - Humber: l:@)
@ (0) Manual 5
(®) Automatic §
b
/
Description: H
Function blocks are code blocks that store thﬁ>
so that they remain available after the block hay
3. Define an output tag of the data type you have created. The PLC data type is
therefore subordinate to the function block.
- [jj TransportBelt [CPU 1511 Engine
I]'f Device configuration Name Data type
ﬂ Online & diagnostics 1 <m » Input
- I;:; Program blocks 2 <@ v Output
K’ Add new block 3 |@l= +* control "typeEngineData”
& MainfOBIl 4 | & ¥ power Struct
4 Engine [FB7] 5 @ . mMaxpower Int
6 | = cosFPhi Real
7| 5 ¥ outputValues Struct
8 | . voltage Real
O | = current Real
10 <3 = frequency Real
4, Drag the function block via drag-and-drop into the “Types” folder in the project
library.
~ [TransportBelt [CPU 1511 Options
[IY pevice configuration €| Library view &)]
ﬂ Online & diagnostics
~ g Program blocks hd | Project library
E Add new block G E [all [+
3 Main [OB1] v oo tiiary
| 3= Engine [FB7] |~ T 5 Type=
T B A0o new type
b [tz] SystemTypes
] r_LJ Master copies

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 82

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.7 Libraries

Step

Instruction

5.

Optionally assign: Type name, version, author and comment and confirm the

dialog with “OK”.
Add type

0 Define the properties for the new types.

The selected objects will be stored as new types in the library.
Specify the version, author and comment for this.

[%

Name of type:

e .

Author: | User ==/ |
Comment:
1 There are dependent objects which will be stored as new types in the library.
n

[ok || Cancel
o=

Y/

The subordinate PLC data type is automatically also stored in the library.

Options
EI Library view L&

W

Project library
BB B
i
7 ﬁ Types
ﬁ“ Add new type
- :d: Engine
3y V0.01
¥ i ypeEngineData

lig V001

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017

83

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.7 Libraries

Example: Changing a type

Table 3-11: Changing a type

Step

Instruction

1.

Right-click the block in the “Project library” and select “Edit type”
Options
El Library view [E=4] ;I

b

syse | kil

Project library

B B
* L1l Project library

= E Types

B Add new type
N Enzine |

) Cpen
] v
- woph D

kg V 0_[/ Duplicate ty,
Update @ »

» [E] System)
Assign version

sauesq &=/

] r:_, Master cop
Library management

x Cut Ctrl+X
Eg| Copy Ctrl+C

% Delete Del
Rename Fz

=] Print... crrl+P

v | Global librarie| £ Frint preview...

o Y [Properties...

Alt+Enter

Select which controller is to be used as test environment and confirm the dialog
with “OK”.
Edit type [%

o Select a test environment to edit the type.

After a testinstance is selected, a new "in test” type version is created in the library. Select the
test instance you wa ntto use:

Instance Type and version Path

1 38" Engine [FB7] Engine V 0.0.1

TransportBelt [CPU 1511-1 PH]IProgram blocks

0K _1 | Cancel

b

If several controllers in the project use the selected block, a controller has to be
selected as test environment.

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017 84

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.7 Libraries

Step Instruction

3. The block opens. A new version of the block is created.
~ [[jj TransportBelt [CPU 15111
I]T Device configuration
) Online & diagnostics
~ [= Frogram blocks
ﬁ:' Add new block
4 Main [OB1]

4 Engine [FE7] ‘Engine| 2 voo02

4. Add an input tag.

In this place you have the option to test the change on the block by loading the
project onto a controller. When you have finished testing the block, continue with
the following steps.

This chject is connected with a type in the libraryand is currentlyin the "in test” state.
Any change to this testinstance is mirrered in the version of the type in the test state:y
ngine
Name Data type Default value Retain
1] v Innor
2 |- velocity Real I 0.0 Mon-retain
3 . e - E
4 < > Output
5 4@l = » contral “typeFnoineData” Nen-retain
5. Click the “release the version” button.

H This object is connected with a type in the libraryand is currentlyin the "in test” state.

Anychange to this testinstance is mirrored in the version of the type in the teststate: You can relesse the version or discard the changes and delete the version .

6. A dialog box opens. Here you can store a version-related comment. Confirm the
dialog with “OK”.
Release type version 1%

0 Define the properties for the released type version.

Anew version will be released for the selected types.
Assign them common properties or confirm the recommended properties.

Name ofype: | Engine

Version: m

Author: | User

Comment:

- ‘ Options

[Delete unused type versions from the library

®

If there are several usage locations of the block in different controllers of the
project, you can update them all at the same time: “Update instances in the
project”.

If older versions of the element are no longer required you can delete them by
clicking “Delete unused type versions from library”

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 85

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.8 Increased performance for hardware interrupts

3.8 Increased performance for hardware interrupts
The processing of the user program can be influenced by events such as hardware
interrupts. When you need a fast response of the controller to hardware events
(e.g. arising edge of a channel of a digital input module), configure a hardware
interrupt. For each hardware interrupt a separate OB can be programmed. This OB
is called by the operating system of the controller in the event of a hardware
interrupt. The cycle of the controller is therefore interrupted and continued after
processing the hardware interrupt.
Figure 3-40: Hardware interrupt is calling OB
Event
e.g. falling
e.g. rising edge E6.1
edge EO.0
Hardware Hardware
interrupt interrupt_1
OB40 OBxxx
In the following figure you can see the configuration of a “hardware interrupt” in the
hardware configuration of a digital input module.
Figure 3-41: Configuring hardware interrupt
0 3 4 5 3 7 i
Rail_0
< \ i 4
Device overview
J General ” 10 tags || Texts
» General [l Hardware interrupts
¥ Module parameters
General
= Channel template [+ Enable rising edge detection:
Inputs
- D”[: Configuration Event name-
General Hardware interrupt: | H_channel_0_rising_ed|{+ |
- Inputs Priarity E 2HI_channel_0_rising_edge [0B40]
Channel 0 4 HI_channel_0_falling_edge [0B41]
pA=b30050 i Y
Advantages

e Fast system response to events (rising, falling edge, etc.)
e Each event can start a separate OB.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 86

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.8 Increased performance for hardware interrupts

Recommendation

e Use the hardware interrupts in order to program fast responses to hardware
events.

o If the system response is not fast enough despite programming a hardware
interrupt, you can still accelerate the response. Set as small an “Input delay” as
possible in the module. A response to an event can always only occur if the
input delay has lapsed. The input delay is used for filtering the input signal in
order to, for example, compensate faults such as contact bounce or chatter.

Figure 3-42: Setting input delay

o 3 4 5 6 7
Rail_0
< |]] 4
e e
Device overview
g
J General ” 10 tags || Texts ’
» General I F]
~ Module parameters > Il 3
General Apply to all channels that use the template 4
= Channel template ai
Inputs Diagnostics L
DI Cenfiguration I
~ D6 [o supply voltage L+ 1
General [wiire break
* Inputs
Elenelo Input parameters
Channel 1
2 Input delay: | 0.05 ms v
Channel 3 I
Channel 4 ml ; 0.1
4
Channel 5 H 04
b 16
Channel & i 32
Channel 7 rl 128
Channel 8 20
el i, g i I

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 87

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.9 Additional performance recommendations

3.9 Additional performance recommendations

Here you can find some general recommendations that enable faster program
processing of the controller.
Recommendation

Note the following recommendations for programming S7-1200/1500 controllers in
order to achieve a high performance:

e LAD/FBD: Disable “evaluate ENO” for blocks. This avoids tests at runtime.

e STL: Do not use registers since address and data registers are only emulated
for compatibility reasons by S7-1500.

Note More information can be found in the following entries:

How do you disable the ENO enable output of an instruction?
https://support.industry.siemens.com/cs/ww/en/view/67797146

How can you improve the performance in STEP 7 (TIA Portal) and in the S7-
1200/S7-1500 CPUs?
https://support.industry.siemens.com/cs/ww/en/view/37571372

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 88

https://support.industry.siemens.com/cs/ww/en/view/67797146
https://support.industry.siemens.com/cs/ww/en/view/37571372

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and Tricks

3.10 SCL programming language: Tips and Tricks

3.10.1

Using call templates

Many instructions of the programming languages offer a call template with a list of
existing formal parameters.

Example

Table 3-12: Easy expanding of the call template

Step

Ins

truction

MainBeltControl

3 <@ v OQurput

o]

[<] [

» | Favorites

bise B pefeuttts v [Basic instructions
14 v Input Name

» 5] Bit logic operations
» [@] Timer operations

4 4@ = » behControl “typeControlBelt” < perations
E Nal]
7 <@ — Stmtc ;- ;r:JD
8 N tatControl
- g atCantro b [] Legacy
9 «4m = » instCounter

» [<] Comparator operations
» [£] Math functions

»
13

¥ Block title: ...

Network 1: ..
Network 2:

~ €3 Network 3: ..

» [Move operations

» 5 Conversion operations

» &r Program control operati...
¥ [08] Word logic operations

» 5] shiftand rotate

» [ere| Legacy

2

1. Drag an instruction from the library into the SCL program. The editor shows the
complete call template.

Now fill in the required parameters “CU” and “PV” and finish the entry with the
“Return” button.

The editor automatically reduces the call template.

Network 3:

1 D#instCounter (CU:=#atatCountlp,
PV:=§statlounterValue):

L RSk

If you want to edit the complete call later on again, proceed as follows.

Click into the call at any place and then click “CTRL+SHIFT+SPACE”. You are
now in the “Call Template” mode. The editor expands the call again. You can
navigate with the “TAB” button through the parameters.

+

#instCounter (CU:=#statCountlp,

R: L in ,
PV, tatCounterValue,

ut)

[

Note: In the “Call Template” mode the writing is in italics.

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017 89

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.10 SCL programming language: Tips and Tricks
3.10.2 What instruction parameters are mandatory?

If you are expanding the call template, the color coding will show you straight away
what formal parameters of an instruction are optional and which ones are not.
Mandatory parameters are marked dark.

3.10.3 Drag-and-drop with entire tag names

In the SCL editor you can also use drag-and-drop functions. For tag names you are
additionally supported. If you want to replace one tag by another, proceed as
follows.

Table 3-13: Drag-and-drop with tags in SCL

Step Instruction

1. Drag the tag via drag-and-drop to the tag in the program that is to be replaced.
Hold the tag for more than 1 second before releasing it.

MainBeltControl
Name Data type
5 4@~ InOut

@ > static

9 |@= statCount\Value Int

10 40 = ~ instCounte) CTU_INT
nla = w Bool
2l = o : Bool
i@ = R Bool
[T i

» Block title:
¥ Network 1: ..

#1nst ounter (CU: I#st Coun t'lIl

PV:=#atatCounti
> 1 Sekunde gedriickt halten

The complete tag is replaced.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 90

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and Tricks

3.10.4

Structuring with the keyword REGION (V14 or higher)

The SCL code can be divided in areas with the keyword REGION. These areas
can be given a name and can be collapsed and expanded.

Advantages

e Better overview

e Easy navigation even in large blocks

e Ready code fragments can be collapsed.

Properties
REGIONSs can be nested.

Recommendation

Use the keyword REGION for the structuring of your SCL blocks.

Example
Figure 3-43: SCL editor

——m te—
— -

B System time, local time, time zone

IF...

CASE... FOR... WHILE..
OF...

-

2
LTJ
~ B DD inputvalue check
g
g
-

- Day of the year
- Calculation
2 Sunrise
* B Sunset

DMS input value check and convertto .|

¥ B Wirite output (sunrise, sunset, daytime}

2 [FIEEGICN Svstem time,

.
TODO.. DO... -.-*] REGION

local time, time

TEH IF (#retval > 1) THEN ...

[IF (#retval > 1) THEN ...

rr

Reading svstem and local time
#¢retval := RD_S5Y5_T(#tempSysTime);
#actSystemTime := #tempSysTime; // O

[

o

of
hs]

T VL A

END_IF;

fficlocTime) ;
cLocTime; //

#retval := RD LOC T(#temp
#actlocallime := #tempOff

END IF;:

S/ Calculation of time difference #temp
#tempTimeZone := DINT_TO_REAL(TIME TO DIy
| END REGION |/System time, local time, tims)

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

91

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.10 SCL programming language: Tips and Tricks

3.10.5 Correct use of FOR, REPEAT and WHILE loops

There are different versions and applications for the use of loops. The following
examples show the differences.

Properties: FOR loop

The FOR loop runs through a defined number of runs. The loop variable is
assigned a start value at the beginning. Afterwards it is incremented up to the end
value in each loop run with the specified step size.

For reasons of performance, the start as well as the end value is calculated once at
the beginning. Consequently, the loop variable can no longer influence the loop
code.

Syntax

FOR statCounter := statStartCount TO statEndCount DO
// Statement section ;

END FOR;

With the EXIT command the loop can be interrupted at any time.

Properties: WHILE loop

The WHILE loop is ended by a termination condition. The termination condition is
checked before the start of the loop code. I.e., the loop is not executed, if the
condition is not instantly fulfilled. Each variable can be adjusted for the next run in
the loop code.

Syntax
WHILE condition DO

// Statement section ;
END WHILE;

Properties: REPEAT loop

The REPEAT loop is ended by a termination condition. The termination condition
is checked at the end of the loop code. This means the loop is run through at
least once. Each variable can be adjusted for the next run in the loop code.

Syntax
REPEAT
// Statement section ;
UNTIL condition
END REPEAT;

Recommendation

e Use FOR loops if the loop variable is clearly defined.

e Use the WHILE or REPEAT loop if a loop variable has to be adjusted during
the loop processing.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 92

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and Tricks

3.10.6 Using CASE instruction efficiently

With the CASE instruction in SCL, it will be exactly jumped to the selected CASE

block condition. After executing the CASE block the instruction is finished. This
allows you, for example, to check frequently required value ranges more
specifically and easily.

Example
CASE #myVar OF
5:
#Engine (#myParam) ;
10,12:
#Transport (#myParam) ;
15:
#Lift (#myParam) ;
0..20:

#Global (#myParam) ;
// Global is never called for the values 5, 10, 12 or 15!
ELSE
END_CASE;

Note CASE instructions also work with CHAR, STRING data types, as well as with
elements (see example in chapter 2.8.5 Data type VARIANT).

3.10.7 No manipulation of loop counters for FOR loop

FOR loops in SCL are pure counter loops, i.e. the number of iterations is fixed
when the loop is entered. In a FOR loop, the loop counter cannot be changed.

With the EXIT instruction a loop can be interrupted at any time.

Advantages

e The compiler can optimize the program better, since it does not know the
number of iterations.

Example
FOR #statVar := #statLower TO #statUpper DO
#statVar := #statVar + 1; // no effect, compiler warning
END_FOR;

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

93

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and Tricks

3.10.8

Example

3.10.9

Example

3.10.10

Example

FOR loop backwards

In SCL you can also increment the index of FOR loops backwards or in another
step width. For this, use the optional “BY” key word in the loop head.

FOR #statVar := #statUpper TO #statLower BY -2 DO
END FOR;

If you are defining “BY” as “-2”, as in the example, the counter is lowered by 2 in
every iteration. If you omit “BY”, the default setting for “BY” is 1

Easy creation of instances for calls

If you prefer to work with the keyboard, there is a simple possibility to create
instances for blocks in SCL.

Table 3-14: Easy creation of instances

Step Instruction

1. Give the block a name, followed by a ".” (dot). The automatic compilation now
shows you the following.

"L&F_Freguency™

sl m > Create multiinstance Mame="LGF_Fr... -
€L o0 3>0pen "Call options" dialo.. Open "Call opti_..
scL p = Create parameterinstance Mame:='LGF_Fr..
scl s - Create single instance MNarne="LGF_Fr...

2. On the top you can see the already existing instances. In addition, you can

directly create a new single instance or multi-instance.
Use the shortcuts "s" or "m" to go directly to the respective entries in the

automatic compilation window.

Handling of time tags

You can calculate the time tags in SCL just as with normal numbers i.e. you do not
need to look for additional functions, such as, e.g. T_COMBINE but you can use
simple arithmetic. This approach is called “overload of operands”. The SCL
compiler automatically uses the suitable functions. You can use a reasonable
arithmetic for the time types and can therefore program more efficiently.

time difference := time stamp 1 - time stamp 2;

The following table summarizes the overloaded operators and the operations
behind it:

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5, 03/2017 94

Copyright © Siemens AG 2017 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and Tricks

Table 3-15: Overloaded operands for SCL

overloaded operand Operation
[time + time T_ADD LTime
[time — time T_SUB LTime
Itime + lint T_ADD LTime
[time — lint T_SUB LTime
time + time T_ADD Time
time - time T_SUB Time
time + dint T_ADD Time
time - dint T_SUB Time
Idt + Itime T_ADD LDT/LTime
Idt — Iltime T _SUBLDT/LTime
Idt + time T _ADD LDT/ Time
Idt — time T_SUB LDT/ Time
dtl + Itime T_ADD DTL /LTime
dtl — ltime T_SUB DTL/LTime
dtl + time T_ADD DTL/ Time
dtl — time T _SUB DTL/ Time
Itod + Itime T _ADD LTOD/ LTime
[tod — Itime T _SUBLTOD/LTime
[tod + lint T _ADD LTOD/ LTime
Itod — lint T _SUBLTOD/LTime
Itod + time T_ADD LTOD/ Time
ltod — time T_SUBLTOD/ Time
tod + time T_ADD TOD / Time
tod — time T _SUB TOD/ Time
tod + dint T _ADD TOD / Time
tod — dint T _SUB TOD/ Time
dt + time T _ADD DT/ Time
dt —time T_SUB DT/ Time
Idt — Idt T_DIFF LDT
dtl —dtl T_DIFF DTL
dt—dt T_DIFF DT
date — date T _DIFF DATE
Itod — Itod T_DIFF LTOD
date + Itod T_COMBINE DATE /LTOD
date + tod T_COMBINE DATE / TOD

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

95

3 General Programming

Copyright © Siemens AG 2017 All rights reserved

3.10 SCL programming language: Tips and Tricks

3.10.11 Unnecessary IF instruction

Programmers often think in IF-THEN-ELSE instructions. This frequently leads to
unnecessary constructs in programs.

Example
IF (statOnl = TRUE AND statOn2 = TRUE) THEN

statMotor := TRUE;
ELSE

statMotor := FALSE;
END IF

Recommendation
Remember that for Boolean requests a direct assignment is often more effective.
The entire construct can be programmed with one line.

Example
statMotor := statOnl AND statOn2;

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

Copyright © Siemens AG 2017 All rights reserved

4 Hardware-Independent Programming

4.1 Data types of S7-300/400 and S7-1200/1500

4

4.1

Hardware-Independent Programming

To make sure that a block can be used on all controllers without any further
adjustments, it is important not use hardware-dependent functions and properties.

Data types of S7-300/400 and S7-1200/1500

Below is a list of all elementary data types and data groups.

Recommendation

Entry ID: 81318674, V1.5,

e Only use the data types that are supported by the controllers on which the

program is to run.

Table 4-1: Elementary data types correspond to standard EN 61131-3

Description S7-300/400 S7-1200 S7-1500
Bit data types BOOL
BYTE yes yes yes
WORD
DWORD
LWORD no no yes
Character type CHAR (8 bit) yes yes yes
Numerical data INT (16 bit)
types DINT (32 bit) yes yes yes
REAL (32 bit)
SINT (8 hit)
USINT (8 hit)
UINT (16 bit) no yes yes
UDINT (32 hit)
LREAL (64 bit)
LINT (64 bit) o o yes
ULINT (64 bit)
Time types TIME
DATE yes yes yes
TIME_OF_DAY
S5TIME yes no yes
LTIME no no yes
L_TIME_OF_DAY
Programming Guideline for S7-1200/S7-1500
03/2017 97

Copyright © Siemens AG 2017 All rights reserved

4 Hardware-Independent Programming

4.1 Data types of S7-300/400 and S7-1200/1500

Table 4-2 Data groups that are made up of other data types

Description S7-300/400 S7-1200 S7-1500

Time ypes) (DDTATE_AN D_TIME) yes no yes

e DTL no yes yes

) (LLD_ TDATE_AND_T||\/|E) no no yes
Character type e STRING yes yes yes
Feld e ARRAY yes yes yes
Structure e STRUCT yes yes yes

Table 4-3: Parameter types for formal parameters that are transferred between blocks
Description S7-300/400 S7-1200 S7-1500

Pointer e POINTER 1)

. ANY yes no yes

e VARIANT no yes yes
Blocks e TIMER 2)

« COUNTER yes yes yes

e BLOCK_FB

. BLOCK:FC yes no yes

e BLOCK_DB

. BLOCK:SDB yes no no

e VOID yes yes yes
PLC datatypes | e PLC DATA TYPE yes yes yes

1

2)

IEC_TIMER and IEC_Counter.

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017

For optimized access, only symbolic addressing is possible
For S7-1200/1500 the TIMER and COUNTER data type is represented by

98

Copyright © Siemens AG 2017 All rights reserved

4 Hardware-Independent Programming

4.2 No bit memory but global data blocks

4.2 No bit memory but global data blocks

Advantages

e Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized only for reasons of compatibility.

Recommendation

e Dealing with bit memory (system and clock flags also) is problematic since the
size of the flag area of each controller has is different. Do not use bit memory
for the programming but always global data blocks. This is how the program
can always be used universally.

4.3 Programming of "Cycle bits"

Recommendation

For the programming of clock memory, the hardware configuration always has to
be correct.

Use a programmed block as clock generator. Below, you can find a programming
example for a clock generator in the SCL programming language.

Example

The programmed block has the following functions. A desired frequency is preset.
The “Q” output is a Boolean value that toggles in the desired frequency. The
“countdown” output outputs the remaining time of the current state of “q”.

If the desired frequency is smaller or equal 0.0, then the output q = FALSE and
Countdown = 0.0.

FB

Lwoe) L L)L
—

0.5 Period duration: 2 seconds

= T#HOS_703MS

Note The complete programming example can be found in the following entry:

https://support.industry.siemens.com/cs/ww/en/view/109479728

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 99

https://support.industry.siemens.com/cs/ww/en/view/109479728

5 STEP 7 Safety in the TIA Portal

Copyright © Siemens AG 2017 All rights reserved

5.1 Introduction

5 STEP 7 Safety in the TIA Portal

51 Introduction

TIA Portal V13 SP1 or higher are supported by fail-safe S7-1200F and S7-1500F
CPUs. In these controllers, standard as well as fail-safe programming is possible in
one device. For programming the fail-safe user programs, the SIMATIC STEP 7
Safety (TIA Portal) option package is used.

Figure 5-1: Standard and safety program

S7-1500F S7-1200F
—
= =

Standard user

5
[program

C 1 ==
LU

I

Safety program

Advantages

e Uniform programming in standard and fail-safe program with an engineering
tool: TIA Portal

e Familiar programming in LAD and FBD
e Uniform diagnostic and online functions

Note Fail-safe does not mean that the program contains no errors. The programmer is
responsible for the correct programming logic.

Fail-safe means that the correct processing of the fail-safe user program in the
controller is ensured.

Note Further information on the topic of safety, such as safety requirements or the
principles of safety programs can be found in:

TIA Portal - An Overview of the Most Important Documents and Links - Safety
https://support.industry.siemens.com/cs/ww/en/view/90939626

Applications & Tools — Safety Integrated
https://support.industry.siemens.com/cs/ww/en/ps/14675/ae

STEP 7 Safety (TIA Portal) - Manuals
https://support.industry.siemens.com/cs/ww/en/ps/14675/man

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 100

https://support.industry.siemens.com/cs/ww/en/view/90939626
https://support.industry.siemens.com/cs/ww/en/ps/14675/ae
https://support.industry.siemens.com/cs/ww/en/ps/14675/man

Copyright © Siemens AG 2017 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.2 Terms

52 Terms

This document consistently uses the terms with the following meaning.

Table 5-1: Safety terms

Term

Description

Standard user program

The standard user program is the program part,
which is not connected with F programming.

Safety program
(F program,
failsafe user program)

The fail-safe user program is the program part
which is processed fail-safe independently of the
controller.

All fail-safe blocks and instructions are shaded
yellow at the software user interface (e. g. in the
project navigation) in order to distinguish blocks and
instructions of the standard user program.

The fail-safe parameters of F-CPUs and F-I/O are
shaded yellow in the hardware configuration.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

101

Copyright © Siemens AG 2017 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.3 Components of the safety program

5.3 Components of the safety program

Das safety program always consists of user-generated, system-generated F blocks
and the “Safety administration” editor.

Table 5-2 Components of the safety program

Description Screen
1. “Safety administration” editor 'rilu";c—ts“**e*ﬂc“’ AL T
Device configuration
- Status of the .safety program L
- F collective signature
- Status of the safety operation ~ |l Program blocks
) B Add new block
Creating/organizing F runtime =
groups - @ DataSync [DB2]
- Information on the F blocks 30 FOB_1 [0B123]
- Information on F-conform PLC F T = R
data types @ Main_Safety DB [DE1]
L. . ¥ | Systemn blocks
- Deflnlng/changlng the access » | Program resources
protection ~ [STEP 7 Safety

8 F_Systeminfo_DB [DE30001] 3
2. User-created F blocks 48 RTG15ysinfo [DB30000]
w |45 FHO data blocks

. J§ FO0000_4/8F-DIDC24V_1 [DB30006]
3. System-generated F runtime blocks 1§ FO0006_4F-DODC24VI24_1 [DB30007]

- Blocks contain status information 4§ FOD011_F-DISx24VDCHF_1 [DB30008]
on the F runtime group. i FO0D17_F-DQ4:x24VDCI2APMHF_1 [DE30003]

» Compiler blocks
= =
4. System-generated F-1/O data blocks > # Technology bjects 5

) i 4 External source files
- Blocks contain tags for evaluating

» [PLC tags

the F modules. ~ (g PLC data types
B Add new data type
. » o
5. “Compiler blocks ot FSYSINFD
System-generated verification blocks | PhyType
i ¥ |55l Watch and force tables
- These run in the background of SR

the controller and provide for fail-
safe processing of the safety
program.

- These blocks cannot be
processed by the user.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 102

Copyright © Siemens AG 2017 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.4 F-runtime group

54 F-runtime group

A safety program is always processed in an F runtime group with defined cycle. An
F runtime group consists of a “Fail-safe organization block” which calls a “Main
safety block”. All user-generated safety functions are called from the

“Main safety block”.

Figure 5-2 F runtime group in the “Safety administration” editor

F-runtime group 1 [RTG1]

Fail-safe organization block Main safety block

7 ! o

foms —Galls | in_sarery [Fa1] =
Event class

mumber (122 [3]
ooetme (100000 s
Fhase shift DB

Priority ‘h-!aln_Safety_DB [DE1] |v|

F-runtime group

Warn cycle time of the runtime group ‘QDDDD us
5

Maximum cycle time of the runtime group | 120000 "

DB for runtime group communication ‘ one

F-runtime group information DB ‘RTG1 Sysinfo

Advantages

¢ Runtime groups can simply be created and configured in the “Safety
Administrator”.

e F-blocks in the runtime group are automatically created.

Properties

e A maximum of two F runtime groups can be created.

5.5 F signature

Each F component (station, I/O, blocks) has a unique F signature. Using the F
signature it can be quickly detected whether an F device configuration, F blocks or
a complete station still corresponds to the original configuration or programming.

Advantages

e Simple and quick comparison of F blocks and F device configurations

Properties

e F parameter signature (without address of F-1/O)...
- only changed by adjusting the parameters.

- remains unchanged when changing the PROFIsafe address. However, the
F collective signature of the station changes.

e F block signature is only changed when the logic in the F block changes.
e F block signature remains unchanged by changing the

- block number,

- block interface,

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 103

Copyright © Siemens AG 2017 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.5 F signature

- block version.

Example
Figure 5-3 Examples of F signatures
Program signature
Description Offline signature | Time stamp
Collective Fsignature 675CEBB03 712912014 4:20:41 PM (UTC +2:00}
F-blocks VN
([AllF-blocks [+)
Description Used and compiled | Function in safety program | Offline signature | Time:
= |l Program blocks
40 FOB_1 [0B123] Yes F-OB 0xB4427972 7i29i0
a0 FOB_2 [0B124] Yes F-0B OxF6658D19 7i29i7
4 Main_Safety_1 [FE1] Yes F-FB 0x51F8DE42 7129/
4+ Main_Safety_2 [FBO] Yes F-FB OX65EDSCE2 7i2917
@ Main_safety DB_1 [DE1] Yes I-DE for F-FB 0x27E959F6 71291
Tm- &m0 PR3) e et mpE e ~-TTEQreTs 70
F-parameter
[IManual assignment of F-monitoring time
nenitoring time |‘SC ms|
E |
F-destination address: |65532 |
3 Sfises [18133 |
Behavior after channel fault: |Passi*.rate channel
[P0 DB manual number assignment
1. F collective signature of the station in the “Safety administration” editor
F block signatures in the “Safety Administration” editor (can also be read out
from the properties of the block)
3. F parameter signature in the “Device view” at “Devices & Networks”
Note For S7-1500F controllers it is possible to read the F overall signature directly on

the installed display or in the integrated web server.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

104

5 STEP 7 Safety in the TIA Portal

Copyright © Siemens AG 2017 All rights reserved

5.6 Assigning the PROFIsafe address at the F-1/10

5.6 Assigning the PROFIsafe address at the F-1/0

Each F-1/0 device has a PROFIsafe address for identification and communication
with F controllers. When assigning the PROFIsafe address, two different
configurations are possible.

Table 5-3: Setting the F address

ET 200M / ET 200S ET 200MP / ET 200SP
(PROFIsafe address type 1) (PROFIsafe address type 2)

Assigning the PROFIsafe address directly Assigning the PROFIsafe address
at the modules via DIL switch exclusively via TIA Portal
In the device configuration of the TIA Portal | The configured PROFIsafe address is
and in the DIL switch position at the loaded onto the intelligent coding module of
periphery, the PROFIsafe address must be | the module.
the same.

Advantages

¢ Replacing an F module is possible without reassigning the PROFIsafe address
at ET 200MP and ET 200SP. The intelligent coding module remains in the
BaseUnit during module exchange.

e Simple configuration since TIA Portal indicates a faulty assignment of the
PROFIsafe address warnings.

e The PROFIsafe addresses of all F modules can be assigned at the same time
within an ET 200SP.

Note Further information on assigning the PROFIsafe address for the F-1/O is
available at:

SIMATIC Industrial Software SIMATIC Safety — Configuring and Programming
https://support.industry.siemens.com/cs/ww/en/view/54110126

5.7 Evaluation of F-1/0

All of the current states of the respective F-1/O are saved in the F-1/O blocks. In the
safety program the states can be evaluated and processed. The following
differences exist between S7-1200F/1500F and S7-300F/400F.

Table 5-4: Tags in the F-1/0 DB with S7-300F/400F and S7-1500F

Tag in F-1/0 DB or value status F-1/0 with S7-300/400F F-1/0 with

in PAE S7-1200F/1500F

ACK_NEC yes yes

QBAD yes yes

PASS_OUT yes yes

QBAD | xx* yes no

QBAD_O xx* yes no

Value status no yes

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 105

https://support.industry.siemens.com/cs/ww/en/view/54110126

Copyright © Siemens AG 2017 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.8 Value status (S7-1200F/1500F)

* QBAD_|_xx and QBAD_O_xx show you the validity of the channel value and
correspond to the inverted value status at S7-1200F/1500F (further information is
available in the following chapter).

5.8 Value status (S7-1200F/1500F)

In addition to the diagnostic messages and the status and error display, the F
module provides information on the validity of each input and output signal - the
value status. The value status is stored in the same way as the input signal in the
process image:

The value status informs about the validity of the respective channel value.

e 1: Avalid process value is output for the channel.

e 0: a substitute value is output for the channel.

Table 5-5: Differences Q_BAD (S7-300F/400F) and value status (S7-1200F/1500F)

Scenario

QBAD (S7-300F/400F)

Value status
(S7-1200F/1500F)

(ACK_REI)

Valid values at the F-1/O (no error) FALSE TRUE
Channel error occurs TRUE FALSE
Channel error going (ACK_REQ) TRUE FALSE
Acknowledgement of the failure FALSE TRUE

Properties

e The value status is entered into the process image of the inputs and outputs.

¢ Channel value and value status of an F-I/O must only be accessed from the

same F run-time group.

Recommendation

e For improved readability assign the ending “vs”, e.g. “TagIn1Vs” as the

symbolic name for the value status.

Example

Position of the value status bits in the process image using the example of an F-DI
8x24VDC HF module.

Table 5-6: Value status bits in the process image using the example of an F-DI 8x24VDC HF

Byte in Assigned bits in the F-CPU
the F-
CPU 7 6 5 4 3 2 1 0
x+0 Dl; Dlg Dls Dlg Dls Dl Dl Dlg
X +1 Value Value Value Value Value Value Value Value
status status status status status status status status
for DI7 for Dlg for Dls for Dls for Dl3 for DI, for DIy for Dlp
X = module start address
Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 106

5 STEP 7 Safety in the TIA Portal

Copyright © Siemens AG 2017 All rights reserved

5.9 Data types

Note More information about the value status of all ET 200SP modules is available at:

Failsafe CPUs - Manuals
https://support.industry.siemens.com/cs/ww/en/ps/13719/man

Failsafe I1/0 modules - Manuals
https://support.industry.siemens.com/cs/ww/en/ps/14059/man

5.9 Data types
59.1 Overview

There is an unrestricted scope of data types for the safety programs of the S7-
1200/1500F.

Table 5-7 Integer data types

Type Size Value range
BOOL 1 bit 0.1
INT 16 bit -32.768 .. 32.767
WORD 16 bit -32.768 .. 65.535
DINT 32 bit -2.14 .. 2.14 Mio
. T#-24d20h31m23s648ms to
TIME 32 bit T#+24d20h31m23s647ms
5.9.2 Implicit conversion

In safety-relevant applications is may be necessary to carry out mathematical
functions with tags of different data types. The function blocks necessary for this,
require a defined data format of the formal parameters. It the operand does not
comply with the expected data type, a conversion has to be carried out first.

Under the following circumstances can the S7-1200/1500 also perform the data
conversion implicitly:

e |EC check is disabled.
e The data types have the same length.

For this reason, the following data types can be converted implicitly in the safety
program:

e WORD « INT
e DINT & TIME

A practical application is the addition of two time values, although the function
“Add” is required as “DInt” input. The result is then also output as “Time” tag.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 107

https://support.industry.siemens.com/cs/ww/en/ps/13719/man
https://support.industry.siemens.com/cs/ww/en/ps/14059/man

5 STEP 7 Safety in the TIA Portal

Copyright © Siemens AG 2017 All rights reserved

5.9 Data types

Figure 5-4: Addition of two time values

MName Data type Default value
& - <Add news
7 |s@ ~ Static
8 |« = statTimeValuel Tirne T#0Oms
9] = statTimeValue2 Time
10 g1 = statTimeSum Tirne
11 - <Add new:s

 Block title: ...

Comment

- Network 1: ..

Camment
ADD
Dint
o= EN
#ctatTimevaluel 1M1 ouT gctatTimesum
#ctatTimeValue2 N2 ENG =

Enable or disable the IEC check in the properties of the respective function block or
function.

Figure 5-5: Disabling IEC check
Block_1 [FB2] [X

General .
Attributes

Information
Time stamps
Compilation IEC check

Riciecton errors within block
Attributes 5
an be used as know-how protected library element

Optimized block access

Multiple instance capability

User-defined attributes

D Enable tag readback

EBlock properties:

oK 1 | Cancel

|

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 108

Copyright © Siemens AG 2017 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.10 F-conform PLC data type

5.10 F-conform PLC data type

For safety programs it is also possible to structure data optimal with PLC data
types.

Advantages

e Achange in a PLC data type is automatically updated in all usage locations in
the user program.

Properties

e F-PLC data types are declared and used in the same way as PLC data types.

e As F-PLC data types, all data types which are allowed in the safety program
can be used.

e Nesting of F-PLC data types within other F-PLC data types is not supported.

e F-PLC data types can be used in the safety program as well as in the standard
user program.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 109

Copyright © Siemens AG 2017 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.10 F-conform PLC data type

Recommendation

e You use F-PLC data types for accessing I/O areas (as in chapter 3.6.5 Access
to 1/0O areas with PLC data types)

e The following rules must be observed here:

- The structure of the tags of the F-conform PLC data type must match the
channel structure of the F-1/0.

- An F-conform PLC data type for an F-1/0O with 8 channels is, for example:

e 8 BOOL tags (channel value) or

e 16 BOOL tags (channel value + value status)

- Access to F-l/O is only permitted for activated channels. When configuring
a 1002 (2v2) evaluation, the higher channel is always deactivated.

Example

Figure 5-6: Access to I/O areas with F-PLC data types

F-PLC data type

|typeFDIx24VDCHF

Narme
finputCho
finputCh1
finputCh2
finputCh3
finputCh4
finputChs
finputChé
finputCh7
finputchovs
finputCh1vs
finputCh2vs
finputCh3vs
finputChavs
finputChsvs
finputChévs

N

finputCh7vs

PLC tag

Name
> i

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

Data type
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
EBool
Bool
Bool
Bool
Bool
Bool
Bool
Bool

Address
|'typeme24 - @: -

03/2017

F-1/0

] E—T—

[=le)
oo
oo
oo
oo
oo
oo
oo
o0

| General

H 10 tags H System constants ‘l Texts

Name

Type
Bool
Bool
Bool
Bool

Address Tag table |C

140
el 1
%l4.2
%43

E-DDI
Bool
Bool
Bool

Sld.d
%145
%l4 6
%el4.7

fDI1 (“typeFDIx24VDCHF")
i D11 & D fnputcho

/1 Ainputchl
I1Anputch2
4 i1 finputchz
4 I1 finputChs
11 finputchs
D11 AnputChe
& D1 AnputCh7?

110

Copyright © Siemens AG 2017 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.11 TRUE / FALSE

5.11 TRUE / FALSE

The use of “TRUE” and “FALSE” signals in the safety programs can be
differentiated in two application cases:

e as actual parameter at blocks
e as assignment to operations

Actual parameter at blocks

For S7-1200F/1500F controllers you can use the Boolean constants “FALSE” for 0
and “TRUE” for 1 as actual parameter for supplying formal parameters during block
calls in the safety program. Only the keyword “FALSE” or “TRUE” is written to the
formal parameter.

Figure 5-7: “TRUE” and “FALSE” signals as actual parameter
#instESTOP

ESTOP
) — #tempEstopQ

. —EM ©Q_DELAY —

‘estopButton” — E_STOP #tempEstopAckR
IrUE ==t ACK. MEC ACK_REQ —£9
"ackEUTION = ACK DIAG
0 — TIME_DEL ENO —

Assignments to operations
In order to create “TRUE” or “FALSE” signals for operations, proceed as follows:
1. Create two static tags "statTrue" and "statFalse" of the type BOOL.
2. Assign the default value “false” to the statFalse tag.
3. Assign the default value “true” to the statTrue tag.

You can use the tags as “True” and “False” read signals in the complete function
block.

Figure 5-8: “TRUE” and “FALSE” signals

Marne Data type Default value Retain
< * Static
] = ctatTrue Bool true MNon-retain
<3 = statFalze Bool falze Mon-retain

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 111

Copyright © Siemens AG 2017 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.12 Optimizing the compilation and program runtime

5.12 Optimizing the compilation and program runtime

An important part of the safety program is the protection of the user programming

by coded processing. The aim is to discover any kind of data corruption in the
safety program and therefore to prevent unsafe conditions.

This protection program is created during the compilation and therefore prolongs

the compilation time. The runtime of the F-CPU is also prolonged through the

protection program, since the F-CPU processes it additionally and compares the

results with the user program.

The protection program that is generated automatically by the system can be found

in the system block folder of your F-CPU.

Example

Figure 5-9: User and system created F blocks

User created System created
F-blocks F-blocks

~ gl Frogram blocks ~ [STEP 7 Safety

B Add new block & F_2H_EN [FB211]
4 Main [0B1] & F_ESTOP1 [FB215]
4 Caselightning [FC1] 2 F_FDBACK [FB216]
2 HM_Interface [FB3] & F_SFDOCR[FB217]
@ HM_Interface_DEB [DB2] & F_Systeminfo_DB [DB30001]
20 FOB_1 [0B123] 48 RTG1Sysinfo [DB30000]
4 F_Depassivation [FB2] - F-0 data blocks
2 F_Motor1 [FB4] J§ FO0004_FDIBX24VDCHF_1 [DE30002]
2 F_Motor2 [FB5] J§ FO0010_F-PMEZ4VDCISAPPMHF_1 [DB30003]
4 F_Motor3 [FBS] Sl F00017_F-DQ4x24VDCI2APMHF_1 [DB30004]
< Main_Safety [FB1] 4§ Fo0022_FDIBXx24VDCHF_2 [DB30005]
@ F Depassivation D8 [083] N
§ F_Motor1_DB [DB4] & SPLIT_FOB_1_1 [FC32767]
§ F_Moror2_DB [DB5] < > 3 SPLIT_FOB_1_2 [FC32768]
@ F_Motor3_DB [DBE] & F_8BOOL_INPUT [FB32770]
@ Main_Safety DB [DE1] \ 4 & F_8BOOL_OUTPUT[FB32773]

~ |- system blocks & F_CTRL_1 [FR32775]

& F_CIRL_2 [FB32786]
& F_CTRL_D [FB32785]
& FET LI[FB32787]

& F_PSV2_13_RCV [FB32768]
& F_PSV2_13_SEND [FB32769]
28 FB1_C [FB32776]

& FB2_C[FB32777]

& FB4_C [FB32780]

8 FBS5_C [FB32782]

& FB6_C [FB32784]

& rB211_C[FB32781]

& FB215_C [FB32778]

28 FB216_C [FB32779]

& rB217_C[FB32783]

& pB1_C[DB30011]

4§ DB3_C[DB30007]

& DB4_c [DE30008]

&5 DB5_C [DB30008]

4§ pBs_c[DB30010]

4§ FB32785_IDB_C[DB30012]
4§ rB32786_IDB_C [DB30013]
& FB32787_IDB_C [DB30014]
& SH_FO0010_F-PME24VDCISAPPMHF_1 [DB30006]

This chapter shows you the different options for shortening the compilation and
program runtime.

Depending on the use it will not always be possible to use all suggestions. They

nevertheless provide information why certain programming methods cause shorter

compilation and program runtimes then a non-optimized program.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

112

Copyright © Siemens AG 2017 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.12 Optimizing the compilation and program runtime

5.12.1 Avoiding of time-processing blocks: TP, TON, TOF

Every time-processing block (TP, TON, TOF) requires additional blocks and global
data corrections in the protection code.
Recommendation

Use these blocks as little as possible.

5.12.2 Avoiding deep call hierarchies

Deep call hierarchies enlarge the code of the system-created F blocks, since a

larger scope of protective functions and test is required. When the nesting depth of

8 is exceeded, the TIA Portal will emit a warning during the compilation.
Recommendation

Structure your program in a way as to avoid unnecessary deep call hierarchies.

5.12.3 Avoiding JMP/Label structures

If a block call is jumped via IMP/LABEL this leads to an additional protection in the
F blocks on the system side. Here, a correction code has to be carried out for the
skipped block call. This costs performance and time in the compilation

Recommendation

Avoid JMP/Label structures as far as possible to reduce F-blocks on the system
side.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 113

5 STEP 7 Safety in the TIA Portal

Copyright © Siemens AG 2017 All rights reserved

5.13 Data exchange between standard program and F program

5.13 Data exchange between standard program and F
program

In some cases it is necessary to exchange data between the safety program and
the standard user program. The following recommendations should urgently be
noted in order to guarantee data consistency between standard and the safety
program.

Recommendations

¢ No data exchange via bit memory (see chapter 4.2 No bit memory but global
data blocks)

e Concentrate the access between safety program and the standard user
program on two standard DBs.

Changes in the standard program will therefore have no influence on the safety
program. The controller also does not need to be in STOP mode to load the
standard program.

Figure 5-10: Data exchange between standard and safety program

Standard user program Safety program

X 4o

Main FOB1
Data buffer
k. b £
Standard [DataToSafety > MainSafety ™

InstMainSafety

4

DataFrom Safety

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 114

Copyright © Siemens AG 2017 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.14 Testing the safety program

5.14 Testing the safety program

In addition to the always controllable data of a standard—-user program you can
change the following data of a safety program in the deactivated safety mode.

Properties

Process image of F-1/0

F-DBs (except DB for F-runtime group communication), instance-DBs of
F-FBs

F-1/0 DBs

Controlling F-1/O is only possible in F-CPU RUN mode.

From a watch table you can control a maximum of 5 inputs/outputs in a safety
program.

You can use several watch tables.

As trigger point you need to set “permanent” or “once” for “cycle start” or “cycle
end”.

Forcing is not possible for the F-1/0O.

If you still wish to use stop points for testing, you need to deactivate the safety
mode beforehand. This leads to the following errors:

- Error during communication with the F-1/0
- Error at fail-safe CPU-CPU communication

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 115

Copyright © Siemens AG 2017 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.15 STOP mode in the event of F errors

5.15 STOP mode in the event of F errors

In the following cases, the STOP mode is triggered for F-CPUs:

°

In the "System blocks" folder you must not add, change or delete any blocks.

-There must not be any access to instance DBs of F-FBs which are not called
in the safety program.

The “Maximum cycle time of the F-runtime group" must not be exceeded.
Select the maximal permitted time for "Maximum cycle time der F run-time
group" which can elapse between two calls of this F runtime group (maximum
20000 ms).

If tags are read from a DB for F runtime group communication whose runtime
group is not processed (main safety block of the F runtime group is not called).

Editing the start values in instance DBs of F-FBs is not permitted online and
offline and can lead to STOP of the F-CPU.

The main safety block must not contain any parameters since they cannot be
supplied.

Outputs of F-FCs must always be initialized.

5.16 Migration of safety programs

Information on migrating safety programs is available at:
https://support.industry.siemens.com/cs/ww/en/view/109475826

5.17 General recommendations for safety

Generally, the following recommendations apply for handling STEP 7 Safety and F
modules.

Whenever possible, always use F controllers. Thus, a later expansion of safety
functions can be realized very easily.

Always use one password for the safety program to prevent unauthorized
changes. The password is set in the “Safety administration” editor.

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017 116

https://support.industry.siemens.com/cs/ww/en/view/109475826

© Siemens AG 2017 All rights reserved

6 The Most Important Recommendations

6

The Most Important Recommendations

Use optimized blocks

- Chapter 2.6 Optimized blocks

Use data type VARIANT instead of ANY
- Chapter 2.8.5 Data type VARIANT
Structuring the program clearly and well
- Chapter 3.2 Program blocks

Inserting instructions as multi-instance (TON, TOF ..)
- Chapter_3.2.5 Multi-instances

Reusable programming of blocks

- Chapter 3.2.9 Reusability of blocks

Symbolic programming

- Chapter 3.6 Symbolic addressing

When handling data, work with ARRAY

- Chapter 3.6.2 ARRAY data type and indirect field accesses

Creating PLC data types
- Chapter 3.6.5 Access to I/O areas with PLC data types

Using libraries for storing program elements

- Chapter 3.7 Libraries

No bit memory but global data blocks

- Chapter 4.2 No bit memory but global data blocks

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

117

© Siemens AG 2017 All rights reserved

7 Links & Literature

7 Links & Literature

Table 7-1
Topic

\1\ Siemens Industry Online Support
https://support.industry.siemens.com

\2\ Download page of the entry
https://support.industry.siemens.com/cs/ww/en/view/81318674

\3\ Programming Styleguide for S7-1200 and S7-1500
https://support.industry.siemens.com/cs/ww/en/view/81318674

\4\ Library with general functions for (LGF) for STEP 7 (TIA Portal) and S7-1200 /
S7-1500
https://support.industry.siemens.com/cs/ww/en/view/109479728

\5\ Libraries with PLC data types (LPD) for STEP 7 (TIA Portal) and S7-1200 /
S7-1500
https://support.industry.siemens.com/cs/ww/en/view/109482396

\6\ | TIA Portal - An Overview of the Most Important Documents and Links
https://support.industry.siemens.com/cs/ww/en/view/65601780

\7\ STEP 7 (TIA Portal) manuals
https://support.industry.siemens.com/cs/ww/en/ps/14673/man

\8\ S7-1200 (F) Manuals
https://support.industry.siemens.com/cs/ww/en/ps/13683/man

\9\ S7-1500 (F) Manuals
https://support.industry.siemens.com/cs/ww/en/ps/13716/man

\10\ | ET 200SP CPU manuals
https://support.industry.siemens.com/cs/ww/en/ps/13888/man

\11\ | S7-1200 Getting Started
https://support.industry.siemens.com/cs/ww/en/view/39644875

\12\ | S7-1500 Getting Started
https://support.industry.siemens.com/cs/ww/en/view/78027451

\13\ | SIMATIC S7-1200/ S7-1500 Comparison List for Programming Languages Based
on the International Mnemonics
https://support.industry.siemens.com/cs/ww/en/view/86630375

Programming Guideline for S7-1200/S7-1500
Entry ID: 81318674, V1.5, 03/2017

118

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/109479728
https://support.industry.siemens.com/cs/ww/en/view/109482396
https://support.industry.siemens.com/cs/ww/en/view/65601780
https://support.industry.siemens.com/cs/ww/en/ps/14673/man
https://support.industry.siemens.com/cs/ww/en/ps/13683/man
https://support.industry.siemens.com/cs/ww/en/ps/13716/man
https://support.industry.siemens.com/cs/ww/en/ps/13888/man
https://support.industry.siemens.com/cs/ww/en/view/39644875
https://support.industry.siemens.com/cs/ww/en/view/78027451
https://support.industry.siemens.com/cs/ww/en/view/86630375

© Siemens AG 2017 All rights reserved

8 History

8 History

Table 8-1

Version

Date

Modifications

V1.0

09/2013

First version

V11

10/2013

Corrections in the following chapters:
2.6.3 Processor-optimized data storage for S7-1500

2.12 User constants

3.2.2 Functions (FC)

3.2.3 Function blocks (FB)

3.4.3 Local memory

V1.2

03/2014

New chapters:

2.6.4 Conversion between optimized and non-optimized tags
2.6.6 Communication with optimized data

2.9.1 MOVE instructions

2.9.2 VARIANT instructions

3.6.5 Access to I/O areas with PLC data types

Corrections in the following chapters:
2.2 Terms

2.3 Programming languages

2.6 Optimized blocks

2.10_Symbolic and comments

3.2 Program blocks

3.5 Retentivit
4.3 Programming of "Cycle bits"

Various corrections in different chapters

V1.3

09/2014

New chapters:

2.8.4 Unicode data types

2.10.2 Comment lines in watch tables
2.12 User constants

3.2.10 Auto numbering of blocks

5 STEP 7 Safety in the TIA Portal

Corrections in the following chapters:

2.7 Block properties

2.8 New data types for S7-1200/1500

2.9 Instructions

2.10_Symbolic and comments
3.6.4_STRUCT data type and PLC data types
3.7 Libraries

Various corrections in different chapters

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017

119

© Siemens AG 2017 All rights reserved

8 History

Version

Date

Modifications

V14

11/2015

New chapters:
2.6.5 Parameter transfer between blocks with optimized and
non-optimized access

3.3.3 Overview for transfer of parameters
3.10.5 Correct use of FOR, REPEAT and WHILE loops
5.12 Optimizing the compilation and program runtime

V15

03/2017

New chapter:

2.7.3 Block interface — hide block parameters (V14 or higher)
2.9.4 Comparison of tags from PLC data types (V14 or higher)
2.9.5 Multiple assignment (V14 or higher)

3.2.6 Transferring instance as parameters (V14)

3.6.3 Formal parameter Array [*] (V14 or higher)

3.6.7 SCL networks in LAD and FBD (V14 and higher)

3.10.4 Structuring with the keyword REGION (V14 or higher)
3.10.11 Unnecessary IF instruction

Several corrections in different chapter

Programming Guideline for S7-1200/S7-1500

Entry ID: 81318674, V1.5,

03/2017

120

	Programming Guideline for S7-1200/S7-1500
	Warranty and Liability
	1 Preface
	2 S7-1200/S7-1500 innovations
	2.1 Introduction
	2.2 Terms
	2.3 Programming languages
	2.4 Optimized machine code
	2.5 Block creation
	2.6 Optimized blocks
	2.6.1 S7-1200: Structure of optimized blocks
	2.6.2 S7-1500: Structure of optimized blocks
	2.6.3 Processor-optimized data storage for S7-1500
	2.6.4 Conversion between optimized and non-optimized tags
	2.6.5 Parameter transfer between blocks with optimized and non-optimized access
	2.6.6 Communication with optimized data

	2.7 Block properties
	2.7.1 Block sizes
	2.7.2 Number of organization blocks (OB)
	2.7.3 Block interface – hide block parameters (V14 or higher)

	2.8 New data types for S7-1200/1500
	2.8.1 Elementary data types
	2.8.2 Data type Date_Time_Long
	2.8.3 Other time data types
	2.8.4 Unicode data types
	2.8.5 Data type VARIANT (S7-1500 and S7-1200 from FW4.1)

	2.9 Instructions
	2.9.1 MOVE instructions
	2.9.2 VARIANT instructions (S7-1500 and S7-1200 FW4.1 and higher)
	2.9.3 RUNTIME
	2.9.4 Comparison of tags from PLC data types (V14 or higher)
	2.9.5 Multiple assignment (V14 or higher)

	2.10 Symbolic and comments
	2.10.1 Programming editor
	2.10.2 Comment lines in watch tables

	2.11 System constants
	2.12 User constants
	2.13 Internal reference ID for controller and HMI tags
	2.14 STOP mode in the event of errors

	3 General Programming
	3.1 Operating system and user program
	3.2 Program blocks
	3.2.1 Organization blocks (OB)
	3.2.2 Functions (FC)
	3.2.3 Function blocks (FB)
	3.2.4 Instances
	3.2.5 Multi-instances
	3.2.6 Transferring instance as parameters (V14)
	3.2.7 Global data blocks (DB)
	3.2.8 Downloading without reinitialisation
	3.2.9 Reusability of blocks
	3.2.10 Auto numbering of blocks

	3.3 Block interface types
	3.3.1 Call-by-value
	3.3.2 Call-by-reference
	3.3.3 Overview for transfer of parameters

	3.4 Memory concept
	3.4.1 Block interfaces as data exchange
	3.4.2 Global memory
	3.4.3 Local memory
	3.4.4 Access speed of memory areas

	3.5 Retentivity
	3.6 Symbolic addressing
	3.6.1 Symbolic instead of absolute addressing
	3.6.2 ARRAY data type and indirect field accesses
	3.6.3 Formal parameter Array [*] (V14 or higher)
	3.6.4 STRUCT data type and PLC data types
	3.6.5 Access to I/O areas with PLC data types
	3.6.6 Slice access
	3.6.7 SCL networks in LAD and FBD (V14 and higher)

	3.7 Libraries
	3.7.1 Types of libraries and library elements
	3.7.2 Type concept
	3.7.3 Differences between the typifiable objects for CPU and HMI
	3.7.4 Versioning of a block

	3.8 Increased performance for hardware interrupts
	3.9 Additional performance recommendations
	3.10 SCL programming language: Tips and Tricks
	3.10.1 Using call templates
	3.10.2 What instruction parameters are mandatory?
	3.10.3 Drag-and-drop with entire tag names
	3.10.4 Structuring with the keyword REGION (V14 or higher)
	3.10.5 Correct use of FOR, REPEAT and WHILE loops
	3.10.6 Using CASE instruction efficiently
	3.10.7 No manipulation of loop counters for FOR loop
	3.10.8 FOR loop backwards
	3.10.9 Easy creation of instances for calls
	3.10.10 Handling of time tags
	3.10.11 Unnecessary IF instruction

	4 Hardware-Independent Programming
	4.1 Data types of S7-300/400 and S7-1200/1500
	4.2 No bit memory but global data blocks
	4.3 Programming of "Cycle bits"

	5 STEP 7 Safety in the TIA Portal
	5.1 Introduction
	5.2 Terms
	5.3 Components of the safety program
	5.4 F-runtime group
	5.5 F signature
	5.6 Assigning the PROFIsafe address at the F-I/O
	5.7 Evaluation of F-I/O
	5.8 Value status (S7-1200F/1500F)
	5.9 Data types
	5.9.1 Overview
	5.9.2 Implicit conversion

	5.10 F-conform PLC data type
	5.11 TRUE / FALSE
	5.12 Optimizing the compilation and program runtime
	5.12.1 Avoiding of time-processing blocks: TP, TON, TOF
	5.12.2 Avoiding deep call hierarchies
	5.12.3 Avoiding JMP/Label structures

	5.13 Data exchange between standard program and F program
	5.14 Testing the safety program
	5.15 STOP mode in the event of F errors
	5.16 Migration of safety programs
	5.17 General recommendations for safety

	6 The Most Important Recommendations
	7 Links & Literature
	8 History

