‘ b ~_',;; g ™
: \
b 5 ', ‘. ; y) < L
% 4 ~ L d
] - 2

Background and System Description ¢ 09/2014

Programming Guideline for
S7-1200/S7-1500

STEP 7 (TIA Portal) and STEP 7 Safety in TIA Portal

http://www.siemens.com/simatic-programming-quideline

http://www.siemens.com/simatic-programming-guideline

Warranty and Liability

© Siemens AG 2014 All rights reserved

Warranty and Liability

Note The Application Examples are not binding and do not claim to be complete
regarding the circuits shown, equipping and any eventuality. The Application
Examples do not represent customer-specific solutions. They are only intended
to provide support for typical applications. You are responsible for ensuring that
the described products are used correctly. These application examples do not
relieve you of the responsibility to use safe practices in application, installation,
operation and maintenance. When using these Application Examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
Application Examples at any time without prior notice.

If there are any deviations between the recommendations provided in these
application examples and other Siemens publications — e.g. Catalogs - the
contents of the other documents have priority.

We do not accept any liability for the information contained in this document.

Any claims against us — based on whatever legal reason — resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this Application Example shall be excluded. Such an exclusion shall
not apply in the case of mandatory liability, e.g. under the German Product Liability
Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,
body or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The damages for a breach of a substantial
contractual obligation are, however, limited to the foreseeable damage, typical for
the type of contract, except in the event of intent or gross negligence or injury to
life, body or health. The above provisions do not imply a change of the burden of
proof to your detriment.

Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of Siemens Industry Sector.

Security Siemens provides products and solutions with industrial security functions that

ipforma- support the secure operation of plants, solutions, machines, equipment and/or

tion networks. They are important components in a holistic industrial security
concept. With this in mind, Siemens’ products and solutions undergo continuous
development. Siemens recommends strongly that you regularly check for
product updates.

For the secure operation of Siemens products and solutions, it is necessary to
take suitable preventive action (e.g. cell protection concept) and integrate each
component into a holistic, state-of-the-art industrial security concept. Third-party
products that may be in use should also be considered. For more information
about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-
specific newsletter. For more information, visit
http://support.automation.siemens.com.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 2

http://www.siemens.com/industrialsecurity
http://support.automation.siemens.com/

© Siemens AG 2014 All rights reserved

Table of Contents

Table of Contents

Warranty and Liabilityccccoiriiiiiiirirrrrrrrrrrrsrrrsrrrsrsss s 2
1 Preface ... 5
2 S7-1200/1500 INNOVALIONScooiiiiiiie e e 7
21 INTrOAUCTION ... e 7
2.2 TEOIMNS e s 7
2.3 Programming 1anguages ..o 9
2.4 Optimized maching Code...........coovciiiiiiii e 9
2.5 BlOCK Creationceeiiiiiieee e 10
2.6 Optimized DIOCKSooeeeee e 11
2.6.1 S7-1200: Setup of optimized bIOCKS..........ooviiiiiiiiiieie s 11
2.6.2 S7-1500: Setup of optimized bIOCKS..........cooiiiiiiiiiiiii s 12
2.6.3 Best possible data storage in the processor on S7-1500 13
26.4 Conversion between optimized and non-optimized tags 16
2.6.5 Communication with optimized datacccoooiii 17
2.7 Block properties........ooveveveeeeeeeeee 18
271 BIOCK SIZES ... 18
2.7.2 Number of organization blocks (OB).........ccccoceveeeiiiciiiiiiee e, 18
2.8 New data types for S7-1200/1500.........ccccccmririreeeeiiiiiieee e 19
2.81 Elementary data types........oooiiiiiiiiii e 19
2.8.2 Date_Time_Long data type.......ccuveeiiiieii e, 20
2.8.3 Further time data types ... 20
284 Unicode data types.........eeeiiiieiiieee e 21
2.8.5 VARIANT data type (only S7-1500)oeuiiiiiaiiiiiiieeee e 22
29 INSTPUCHIONS ... 25
291 CALCULATE ..ttt 25
29.2 MOVE INStIUCLIONS........uiiiiiiiee et 25
293 VARIANT instructions (only S7-1500).......c.ccccveeiiiiiieeeiee e 28
294 RUNTIME ...ttt e e snneee e 28
210 Symbolic and ComMmMENtSooiuiiiiiiii 29
2101 Programming €AitOrcooiiiiiiiieiie e 29
2.10.2 Commentlines in watch tableccccciieiiiiiiiic e, 30
2.1 System CoNStANESooooiiii e 31
212 USEr CONSEANTS ..ooiiiiieeee e 32
213 Internal reference ID for controller and HMI tagscccccooiiiieeeeenn. 33
2.14 STOP mode in the event Of €rrors ... 35
3 General Programmingccccccmniinniinsse s s 36
3.1 Operating system and USer program...........oocccuveeeeeeeeeiiniiieieeeee e 36
3.2 Program BIOCKScooiiiiiieie e 36
3.21 Organization blocks (OB)cccoouiiiiiiiiiieiiiie e 37
3.2.2 FUNCHONS (FC)..uiiiiiiiieiee et 40
3.2.3 Function bIOCKS (FB)coiiiiiiiiiiiie e 42
3.24 INSEANCES ... 43
3.2.5 MUI-INSTANCES ..coiieieeeee e 43
3.2.6 Global data blocks (DB)ceiiiiiiiiiiiiiee e 45
3.2.7 Downloading without reinitializationcccccciiiiiiii 46
3.2.8 Reusability of bIOCKS.........ooiiiii 50
3.2.9 Auto numbering of bIOCKS............oiiiiiii 51
3.3 Block interface typeseoeii i 52
3.3.1 Call-by-value with In interface typeccoceeeiiiiii e, 52
3.3.2 Call-by-reference with InOut interface type.........cccccoviiiiiiinniieen, 52
3.4 StOrage CONCEPLooiiiiiiie e e 53
3.4.1 Block interfaces as data exchangeccccoooiiiiii e 53
3.4.2 GIODAl MEMOTY ... 54

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3,

09/2014 3

Table of Contents

© Siemens AG 2014 All rights reserved

3.4.3 LOCAl MEMOIY ... 55
344 Access speed Of MEMOrY Areas..........ccccvvveeeeeeeieiciiieeee e 56
3.5 RetentiVity......coo oo 57
3.6 Symbolic addreSSiNgcccuvviiiiieiie e 59
3.6.1 Symbolic instead of absolute addressing..........ccccceeeeiiiiiiiieiee e, 59
3.6.2 ARRAY data type and indirect field accesses..........ccccceeiiiiiinneenn. 61
3.6.3 STRUCT data type and PLC data typesccccoeveeeiiiiieeiiiieeeiee, 63
3.6.4 Access to /O areas with PLC data types.........ccccovieiiiiiiiniieeeie, 66
3.6.5 SlICE ACCESS ..nnniieiiiii et e e e e 67
3.7 [o] = 14 1= SRR 68
3.71 Types of libraries and library elementscccoociiiiiiiinee e, 68
3.7.2 IR/ 01T 70 o= o | O PPRN 70
3.7.3 Differences for typifiable objects for CPU and HMI............................. 70
3.74 Versioning of @ BIOCKcooiiiiiiiiiiee e 71
3.8 Increasing performance with process interruptsccccccoeecvvveeeeeenn. 75
3.9 Other performance recommendationscccccceveeeeiiiciiiieeee e, 77
3.10 SCL programming language: Tips and tricksccccccooecciieeeeeiiicnns 78
3.10.1 Using call templatescoooiiiiiiiiiiii e 78
3.10.2 What instruction parameters are mandatory?..........ccccoccoeeiiiienennnn. 79
3.10.3 Drag & drop with entire tag Nnames...........cccoecveviiiic i 79
3.10.4 Efficiently inserting CASE instruction ... 80
3.10.5 No manipulation of loop counters for FOR [00pP...........cvvvirvverevevirennns 80
3.10.6 FOR 100p baCKWards..........coccuiiiiiiiiiiiiiiiie e 81
3.10.7 Simple creating of instances for calls............cccccconiiiiiiiiiiiiie e 81
3.10.8 Handling of iMe tagsS........coeiiiiieiie e 81
4 Hardware-Independent Programmingccccoooiiiicciimmnnnnnsncccseene e 83
4.1 Data types of S7-300/400 and S7-1200/1500..........cccceevriierenninenannns 83
4.2 No bit memory but global data blocks............cccccoiii, 84
4.3 Programming of "clock bits" ... 85
5 STEP 7 Safety in the TIA Portal........ccccco e seee e 86
51 INErOAUCHION ... 86
5.2 1= 0 TSP 87
5.3 Components of the safety program...........ccoooiiiiiiiiiiiii e 88
54 F-runtime grouUp oo 89
5.5 F SIGNALUIE ... 89
5.6 Assigning the PROFIsafe address at the F-1/O.........cccccccoovviveenenn. 91
5.7 Evaluation of F-1/Ouuriiiiie e 91
5.8 Value status (S7-1500F)ccooiiiiiiiiiieeeee e 92
59 Data tYPES .. 93
5.10 F-conform PLC data typeooooeeiiiiiiiee e 93
5.11 TRUE/FALSE ...ttt 95
512 Data exchange between standard program and F program 96
513 Testing the safety program..........oooo e, 96
514 STOP mode inthe event of F €rrorscooooiiiiiiiiiiceeee e 97
5.15 Migration Of tagScoe i 98
5.16 General recommendations for safetycccccviiiiiciie, 98
6 The Most Important Recommendations............cooooiiiiiiiciiinncceeee 929
Related Literature ... 100
8 [1= o 101

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 4

Copyright © Siemens AG 2014 All rights reserved

1 Preface

1 Preface

Aims for the development of the new SIMATIC control generation

e An engineering framework for all automation components (controller, HMI,
drives, etc.)

e Uniform programming

e Increased performance

e Full set of commands for every language
e Fully symbolic program generation

e Data handling even without pointer

¢ Reusability of created blocks

Aim of the guideline

The new control generation SIMATIC S7-1200 and S7-1500 has an up-to-date
system architecture, and together with the TIA Portal offers new and efficient
options of programming and configuration. It is no longer the resources of the
controller (e.g. data storage in the memory) that are paramount but the actual
automation solution.

This document gives you many recommendations and tips on the optimal
programming of S7-1200/1500 controllers. Some differences in the system
architecture of the S7-300/400, as well as the thus connected new programming
options are explained in an easy to understand way. This helps you to create a
standardized and optimal programming of your automation solutions.

The examples described can be universally used for the controllers S7-1200 and
S7-1500.

Core content of this programming guideline
The following key issues on the TIA Portal are dealt with in this document:
e S7-1200/1500 innovations
- Programming languages
- Optimized blocks
- Data types and instructions
¢ Recommendation on general programming
- Operating system and user program
- Storage concept
- Symbolic addressing
- Libraries
e Recommendations on hardware-independent programming
e Recommendations on STEP 7 Safety in TIA Portal
e Overview of the most important recommendations

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

Copyright © Siemens AG 2014 All rights reserved

1 Preface

Advantages and benefits
Numerous advantages arise by applying these recommendations and tips:
e Powerful user program
e Clear program structures
e Intuitive and effective programming solutions

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

2 S7-1200/1500 Innovations

Copyright © Siemens AG 2014 All rights reserved

2.1 Introduction

2 S7-1200/1500 Innovations

2.1 Introduction

In general, the programming of SIMATIC controllers has stayed the same from
S7-300/400 to S7-1500. There are the familiar programming languages such as
LAD, FBD, STL, SCL or graph and blocks such as organization blocks (OBs),
function blocks (FBs), functions (FCs) or data blocks (DBs). l.e. already created
S7-300/400 programs can be implemented on S7-1500 and already created LAD,
FBD and SCL programs on S7-1200 controller without any problems.

Additionally, there are many innovations that make programming easier for you and
which allow a powerful and storage-saving code.

We not only recommend implementing programs that are implemented for
S7-1200/1500 controllers 1:1 but also to check them for the new options and where
applicable, to use them. The additional effort is often limited and you get a program
code that is, for example,

» optimal in terms of memory and runtime for the newer CPUs
» easier to understand,
* and easier to maintain.

2.2 Terms

General terms using TIA Portal

Some terms have changed in order to make better handling with the TIA Portal
possible.

Figure 2-1: New terms in the TIA Portal

STEP 7 V5.x STEP 7 (TIA Portal)
@ Symbol table ',a PLC tags
I+ UDT |:> &l PLC data types
WA VAT table [Watch table

Terms for tags and parameters

When it is about tags, functions, and function blocks, many terms are repeatedly
used differently or even incorrectly. The following figure is to clarify these terms.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 7

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.2 Terms
Figure 2-2: Terms associated with tags and parameters
Global DB FC/FB
DB_Global TFcl)
YcMoveVariant”
Name Data type Start value
| 4@ - sgic |2 EEC
2 MoveVariantEnablel] Int 15 ?DE B
3 Inputint Int 15 'DB-IGJUE?‘:(; Ret_Val = "DE_Global" Error
4 QOutputint Int % e 1S5 §
5 41 InputReal Real 17.3 Ouumfgﬂ_oiiiﬁal
6 @-= OutputReal Real
7 @ = M InputMyType *MyType” ?bne Global'
& 4 = g OutputhyType “MyType® UumeaI—UUTEL?Rﬁ'
9 @-we InputBool Bool
10 @ = Error int "DB_Glcbal".
OuthyType |— OutputhiyType
Table 2-1: Terms associated with tags and parameters
Term Description
1. Tag Tags are reserved memory areas for values in the
controller. Tags are always defined with a certain data
type (Bool, Integer, etc.):
e PLCtags
e Single tags in data blocks
e Complete data blocks
2. Tag value Tag values are values stored in a tag (e.g., 15 as value
of an Integer tag).
3. Actual parameter Actual parameters are tags interconnected at the
interfaces of instructions, functions, and function blocks.
4. Formal parameter Formal parameters are the interface parameters of
(transfer parameter, instructions, functions, and function blocks (Input,
block parameter) Output, InOut, Temp, Static, and Return).
Note You will find further information in the following entries:

What entries are available on the internet for the migration to STEP 7 (TIA

Portal) and WinCC (TIA Portal)?
http://support.automation.siemens.com/WW/view/en/58879602

What prerequisites have to be fulfilled in order to migrate a STEP 7 V5.x project
into STEP 7 Professional (TIA Portal)?
http://support.automation.siemens.com/WWW/view/en/62101406

PLC migration for S7-1500 with STEP 7 (TIA Portal)
http://support.automation.siemens.com/WW/view/en/67858106

Programming recommendations for S7-1200 and S7-1500 with STEP 7
(TIA Portal)
http://support.automation.siemens.com/WWW/view/en/67582299

Why is it not possible to mix register passing and explicit parameter transfer with
the S7-1500 in STEP 7 (TIA Portal)?

Among others, the migration of STL programs to S7-1500 is described in this
entry.

http://support.automation.siemens.com/WWW/view/en/67655405

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

http://support.automation.siemens.com/WW/view/en/58879602
http://support.automation.siemens.com/WW/view/en/62101406
http://support.automation.siemens.com/WW/view/en/67858106
http://support.automation.siemens.com/WW/view/en/67582299
http://support.automation.siemens.com/WW/view/en/67655405

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.3 Programming languages

2.3

Note

24

Advantages

Properties

Programming G
Entry-ID: 81318

Programming languages

For the programming of a user program, various different programming languages
are available. Each language has its own advantages, which can be variably used,
depending on the application. Every block in the user program can therefore be
created in any programming language.

Table 2-2: Programming languages

Programming language S7-1200 S7-1500

Ladder (LAD) v v

Function block diagram (FBD)

Structured control language (SCL)

Graph

X% XX
N IENENEN

Statement list (STL)

You will find further information in the following entries:

SIMATIC S7-1200 / S7-1500 Comparison list for programming languages
http://support.automation.siemens.com/WW/view/en/86630375

What has to be observed when migrating a S7-SCL program in STEP 7
(TIA Portal)?
http://support.automation.siemens.com/\WWW/view/en/59784006

What instructions cannot be used in STEP 7 (TIA Portal) in an SCL program?
http://support.automation.siemens.com/WW/view/en/58002710

How can the constants be defined under STEP 7 (TIA Portal) in a S7-SCL
program?
http://support.automation.siemens.com/WW/view/en/58065411

Optimized machine code

TIA Portal and S7-1200/1500 allow an optimized runtime performance in any
programming language. All languages are compiled the same, directly into the
machine code.

e All programming languages have the same high performance (with the same
access types)

¢ No reduced performance through additional compiling with an intermediate
step via STL

The following figure displays the difference of the compilation of S7 programs into
machine code.

uideline for S7-1200/S7-1500
674, V1.3, 09/2014 9

http://support.automation.siemens.com/WW/view/en/86630375
http://support.automation.siemens.com/WW/view/en/59784006
http://support.automation.siemens.com/WW/view/en/58002710
http://support.automation.siemens.com/WW/view/en/58065411

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.5 Block creation

Figure 2-3: Machine code generation with S7-300/400/WinAC and S7-1200/1500

: |
$7-300/400/WinAC F s7-1200/1500£

gv SCL f 3 4 [UE 0.0
‘:« § '@ Fop FaD Y
f FBD W SCL L ; STL
=N ; FBD | (only $7-1500)

[UE 0.0

FAR2| STL U
Maschine code Maschine code
$7-300/400/WinAC $7-1200/1500

e For S7-300/400/WinAC controllers LAD and FBD programs are first of all
compiled in STL before the machine code is created.

e For S7-1200/1500 controllers all programming languages are directly compiled
into machine code.

2.5 Block creation

All blocks such as OBs, FBs and FCs can be programmed directly in the desired
programming language. Thus no source has to be created for SCL programming.
You only select the block, and SCL as programming language. The block can then
be directly programmed.

Figure 2-4: “Add new block” dialog

Lenguage: s

| LAD
Number: FED

Function blocks are code blocks that store their values permanently in instance data blocks,
Function black so that they remain available after the block has been executed.

Function

| Hﬂ
Data block

more..

> |Additional information

[Add new and cpen oK Cancel

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 10

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks

2.6 Optimized blocks

S7-1200/1500 controllers have optimized data storage. In optimized blocks, all tags
are automatically sorted by their data type. The sorting ensures that data gaps
between the tags are minimized and that the tags are stored access-optimized for
the processor.

Non-optimized blocks only exist for reasons of compatibility in S7-1200/1500.

Advantages

e The access is always as fast as possible, since the file storage is optimized by
the system and is independent of the declaration.

e No danger of inconsistencies due to faulty, absolute accesses since the access
is generally symbolic.

e Declaration changes do not lead to access errors since, for example, HMI
accesses are performed symbolically.

¢ Individual tags can be specifically defined as “retain”.

¢ No settings in the instance data block are necessary. Everything is set in the
assigned FB (e.g. retentivity).

e Memory reserves in the data block make it possible to change the actual
values without any loss (see chapter 3.2.7 Downloading without reinitialization)

2.6.1 S$7-1200: Setup of optimized blocks

Figure 2-5: Optimized block of S7-1200

Standard block Optimized block

Standard

Properties

¢ No data gaps are formed since larger tags are located at the beginning of the
block and smaller ones at the end.

e Only the symbolic access exists for optimized blocks.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 1

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks

2.6.2

Properties

S$7-1500: Setup of optimized blocks

Figure 2-6: Optimized block of S7-1500
Standard block

Optimized block

Standard

g
ad |
: ///////////////////////A

6.///////
7%////////////////////////4

9

AR

Figure 2-7: Memory space assignment in optimized blocks
optimized 4 Byte are always read at once o
|

W
----IIIIIIIIII
- L Resere ====
NIl

L Resene

1. Structures are stored separately and can thus be copied as one block.

2. Retentive data are stored in a separate area and can be copied as one block.
In the event of a power failure, these data are stored CPU-internally. "MRES"
resets these data to the start values stored in the load memory.

o No data gaps are formed since larger tags are located at the beginning of the
block and smaller ones at the end.

e Fast access due the best possible storage in the processor (All tags are stored
in a way so that the processor of the S7-1500 can directly read or write all tags
with just one machine command).

e Boolean tags are stored as byte for faster access. The controller therefore
does not have to mask the access.

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3, 09/2014

12

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks

2.6.3

e Optimized blocks have a memory reserves for reloading in running operation
(see chapter 3.2.7 Downloading without reinitialization).

e Only the symbolic access exists for optimized blocks.

Best possible data storage in the processor on S7-1500

For reasons of compatibility to the first SIMATIC controllers the “Big-Endian”
principle of data storage was adopted in the S7-300/400 controllers.

The new S7-1500 controller generation always accesses 4 byte (32 bit) in “Little-
Endian” sequence due to the changed processor architecture. This results in the

following system-specific properties.
Figure 2-8: Data access of a S7-1500 controller

Standard block
max. 64kB

Standard
2 3 4 5 6 7
BYTE

Conversion for
processor access:
Big - Little Endian

: REAL
</ Big-Endian
L6

~ WORD
Big-Endian

w

1

Copying requires time due to resorting!

- o

Table 2-3: Data access of a S7-1500 controller

Optimized block
max. 16MB

1

2 3 4 5 6 7

] |
Best possible processor
data storage:

REAL No conversion

required.

1

o = N W

Little-Endian

WORD
Little-Endian

BYTE

o -

X

X
2) Reserve

Standard block

Optimized block

1. In the event of an unfavorable offset,
the controller needs 2x16 bit accesses
in order to be able to read a 4 byte
value (e.g. REAL value).

The controller stores the tags, access
optimized. An access is performed with
32 bit (REAL).

A changing of the bytes is not

per bit access.

The complete byte is blocked for any
other access.

In addition the bytes have to be necessary.
changed.
2. The complete byte is read and masked Each bit is assigned a byte.

When accessing, the controller does not
have to mask the byte.

3. Maximum block size is 64kB.

Maximum block size can be up to
16MB.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

13

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks

Recommendation

e Always only use optimized blocks.

- They do not require absolute addressing and can always be addressed
with symbolic data (object related). Indirect addressing is also possible with
symbolic data (see chapter 3.6.2 ARRAY data type and indirect field
accesses).

- The processing of optimized blocks in the controller is much faster than
with standard blocks.

e Avoid the copying/assigning of data between optimized and non-optimized
blocks. The required conversion between source and destination format
requires high processing time.

Example: Setting optimized block access

The optimized block accesses for all newly created blocks for S7-1200/1500 is
enabled by default. Block access can be set for OBs, FBs and global DBs. For
instance DBs, the setting depends on the respective FB.

The block access is not reset automatically when a block is migrated from a
S7-300/400 controller to a S7-1200/1500. You can change the block access later
on to “optimized block access”. You need to recompile the program after changing
the block access. If you change the FBs to “optimized block access”, the assigned
instance data blocks are automatically updated.

Follow the instructions below, in order to set the optimized block access.
Table 2-4: Setting optimized block access

Step

Instruction

1.

Click the “Maximizes/minimizes the Overview” button in the project navigation.

Project Edit View Insert Online Options Tools W
f i seveproject & X 15 T X 02 (¥x]

A @] 5 7-1500_Programming_V12_SP1
I Add new device
gy Devices & networks

» (i3 PLC_1 [CPU 1516-3 PN/DP]

Navigate to “Program blocks".

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3,

09/2014 14

2 S7-1200/1500 Innovations

Copyright © Siemens AG 2014 All rights reserved

2.6 Optimized blocks

Step Instruction
3. This is where you see all blocks in the program and whether they are optimized
or not. In this overview the “Optimized block access” status can be conveniently
changed.
g
DHL=
Name Modified Title Address Type Language] Opumlzedblcckaccess‘
=3 I:l;;n [;B;]‘ 8i8/2013 -8:33:27 AM “Main Program S\netp((){le)’ oe1 oB LAD I;l 1
B Function_Block_1 [FB1] 8i8/2013-8:33:37 AM Function_block_1 Fe1 FE FED ~ g
@ Function_Block_1_DB [DB1] 88/2013-8:33:37 AM Function_block_1_DB DB1 DE DB) &
@ Global_DB [DB2] 013-8:32:18AM Global_DB DB2 DE DB - 3
¢ System bloc| 7/23/12013 9:50 AM o o '

Note: Instance data blocks (here “Function_block_1_DB”) inherit the “optimized”
status from the respective FB. This is why the “optimized” setting can only be
changed on the FB. After the compilation of the project the DB accepts the
status depending on the respective FB.

Display of optimized and non-optimized blocks in the TIA Portal

In the two following figures the differences between an optimized and a non-
optimized instance DB can be seen.
For a global DB there are the same differences.

Figure 2-9: Optimized data block (without offset)
Function_Block_1_DB

MName Data type Start value Retain Visible in . Setpoint

1 - w Input

2 @gsn Input_bool_1 Bool fa [+ v
3 as Input_byte_1 Byte 3| v
s @as Input_bool_2 Bool - [v! [v]
5 A= Input_word Word v
& @-n» Input_byte_2 Byte v
7 0 « Output

g 4= Output_bool_1 Bool [V
9 4@ InOut

10 @ Static

Figure 2-10: Non-optimized data blocks (with offset)
Function_Block_1_DB

Name Data type Offset Start value Retain Visible in . | Setpoint

1 <@ ~ Input

2 @n Input_bool_1 Bool di 00 (=] ™
3 @e Input_byte_1 Byte 1.0 =] v
4 as Input_boel_2 Bool 20 =) [v]
s @ Input_word Word 40 =) ~
& 4= Input_byte_2 Eyte 6.0 a V)
7 <@ v Output

B a-n= Output_bool_1 Bool 8.0 [W
9 4 InOut

10 0 Static

Table 2-5: Difference: optimized and non-optimized data block

Optimized data block Non-optimized data block
Optimized data blocks are addressed At non-optimized blocks an “offset” is
symbolic. No “offset” is displayed. displayed and can be used for addressing.
In optimized blocks every tag can be In non-optimized blocks only all or no tags
declared with “Retain”. can be declared with “Retain”.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 15

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks

The retentivity of tags of a global DB is defined directly in the global DB. The
default setting is non-retentive.

The retentivity of tags of one instance is defined in the function block (not in the
instance DB).These settings then apply to all instances of this FB.

Access types for optimized and non-optimized blocks

Note

2.6.4

The following table displays all access types to blocks.
Table 2-6: Access types

Access type Optimized block Non-optimized
block

Symbolic v v
Indexed (fields) v v
Slice accesses 4 v
AT instruction x v

(Alternatively: slice access)
Direct absolute x v

(Alternatively: ARRAY with

index)
Indirect absolute (pointer) x v
(Alternatively: VARIANT /
ARRAY with index)

Downloading without v x
reinitialization

You will find further information in the following entries:

What differences should you watch out for between optimized data storage and
the standard type of block access in STEP 7 (TIA Portal)?
http://support.automation.siemens.com/WWW/view/en/67655611

What properties do you have to pay attention to in STEP 7 (TIA Portal) for the
instructions "READ_DBL" and "WRIT_DBL", when you are using DBs with
optimized access?
http://support.automation.siemens.com/WW/view/en/51434748

Conversion between optimized and non-optimized tags

The general recommendation is to work with optimized tags. However, if you want
to keep your previous programming in individual cases, this leads to a mixture of
optimized and non-optimized data storage in the program.

The system recognizes the internal storage of each tag, no matter if structured
(derived from a user-defined data type) or elementary (INT, LREAL, etc.).

In the case of type-identical allocations between two tags with different storage
locations, the system converts automatically. In the case of structured tags, this
conversion requires performance and should therefore be avoided, if possible.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 16

http://support.automation.siemens.com/WW/view/en/67655611
http://support.automation.siemens.com/WW/view/en/51434748

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks
2.6.5 Communication with optimized data

The interface (CPU, CM) transfers the data as they are arranged (no matter if
optimized or not).

Figure 2-11: CPU-CPU communication

Compatible
data transfer

Send CPU (byte stream) Receive CPU

saoe—my oAl o 2l s o] [7] -
EN ENO EN ENQO ——
==REQ DONE =... s ==EN_R DONE =
= - — -
l - STATUS - STATUS
Send data can be: Receive data can be:
» optimized » optimized
* not optimized * not optimized
» Tag (any type) + Tag (any type)
+ Buffer (byte array) + Buffer (byte array)
Example
e Atag with data type PLC (data record) is to be transferred to a CPU.
e Inthe send CPU, the tag is interconnected as actual parameter with the
communication block (TSEND_C).
¢ Inthe receive CPU, the receive data are assigned to a tag of the same type.
¢ Inthis case, it is possible to symbolically continue to work directly with the
received data.
Note Any tags or data blocks (derived from PLC data types) can be used as data
records.
Note It is also possible that the send and receive data are not defined identically:
Send data Receive data
optimized --> not optimized
not optimized --> optimized

The controller automatically provides for correct data transmission and storage.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.7 Block properties

2.7 Block properties

2.71

Block sizes

For S7-1200/1500 controllers the maximum size of blocks was significantly

increased in the main memory.

Table 2-7: Block sizes

Max. size and number S7 -300/400 S7-1200 S7-1500
(regardless of the main memory
size)
DB Max. size 64 kB 64 kB 64 kB (non-optimized)
10 MB (optimized
CPU1518)
Max. number 16.000 65.535 65.535
FC/FB Max. size 64 kB 64 kB 512 kB
3 MB (optimized
CPU1518)
Max. number 7.999 65.535 65.535
FC/FB/DB | Max. number | 4.096 (CPU319) 1.024 10.000 (CPU1518)
6.000 (CPU412)

Recommendation

e Use the DBs for S7-1500 controllers as data container of very large data
volumes.

e Data volumes of > 64 kB can be stored in an optimized DB (max. size 16 MB)

with S7-1500 controllers.

2.7.2

Number of organization blocks (OB)

OBs can be used for creating a hierarchical structure of the user program. Different
OBs are available for this purpose.

Table 2-8: Number of organization blocks

Organization block type S$7-1200 S$7-1500 Benefit
Cyclic and startup OBs 100 100 Modularization of the
user program
Hardware interrupt 50 50 Separator OB possible
for each event
Time delay interrupt 20 Modularization of the
4+ user program
Cyclic interrupt 20 Modularization of the
user program
Time of day x 20 Modularization of the

user program

* from firmware V4 on 4 delay interrupts and 4 watchdog interrupts each possible.

Recommendation

e Use OBs for structuring the user program hierarchically.

e For further recommendations on using OBs refer please to Chapter
3.2.1 Organization blocks (OB).

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3,

09/2014

18

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

2.8 New data types for S7-1200/1500

S7-1200/1500 controllers support new data types in order to make programming
more convenient. With the new 64 bit data types considerably larger and more
accurate values can be used.

Note You will find further information in the following entry:

How is the conversion of data types performed in the TIA Portal for the
S7-1200/15007?
http://support.automation.siemens.com/WWW/view/en/60546567

2.8.1 Elementary data types
Table 2-9: Integer data types
Type Size Value range
USint 8 bit 0..255
Sint 8 bit -128 .. 127
Ulint 16 bit 0 .. 65535
UDint 32 bit 0 .. 4.3 million
ULInt* 64 bit 0.. 18,4 Trio (10'®)
Lint* 64 bit -9,2 Trio .. 9,2 Trio
LWord 64 bit 16#0000 0000 0000 0000 bis
16# FFFF FFFF FFFF FFFF

* only for S7-1500

Table 2-10: Floating-point decimal data types

Type Size Value range
Real 32 bit (1 bit signs, 8 bit exponent, 23 bit mantissa), -3.40e+38 .. 3.40e+38
accurate to 7 decimal places
LReal | 64 bit (1 bit signs, 11 bit exponent, 52 bit -1.79e+308 .. 1.79e+308
mantissa), accurate to 15 decimal places
Note The TIA Portal contains the global library “Long Functions” with a great scope of
instructions for long data types.
~ | Global libraries
@ U
M o nciors
+ | Master copies
2 ABS_LINT
2 ABS_LREAL
2 ACOS_LREAL
A ADD_LINT
W ep rom
Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 19

http://support.automation.siemens.com/WW/view/en/60546567
http://www.dict.cc/englisch-deutsch/accurate.html
http://www.dict.cc/englisch-deutsch/decimal.html
http://www.dict.cc/englisch-deutsch/places.html
http://www.dict.cc/englisch-deutsch/accurate.html
http://www.dict.cc/englisch-deutsch/decimal.html
http://www.dict.cc/englisch-deutsch/places.html

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

Note You will find further information in the following entry:

Why, in STEP 7 (TIA Portal), is the result of the DInt Addition in SCL not
displayed correctly?
http://support.automation.siemens.com/WW/view/en/98278626

2.8.2 Date_Time_Long data type

Table 2-11: Structure of DTL (Date_Time_Long)

‘ Year | Month | Day ‘Weekday| Hour | Minute | Second | Nanosecond

DTL always reads the current system time. Access to the individual values is
through the symbolic names (e.g. My Timestamp.Hour)
Advantages

e All partial areas (e.g. Year, Month, ...) can be addressed symbolically.

Recommendation

Use the new DTL data type instead of LDT and address symbolically (e.g.
My Timestamp.Hour).

Note You will find further information in the following entries:

In STEP 7 (TIA Portal), how can you input, read out and edit the date and time
for the CPU modules of S7-300/S7-400/S7-1200/S7-15007?
http://support.automation.siemens.com/\WWW/view/en/58387452

Which functions are available in STEP 7 V5.5 and in TIA Portal for processing
the data types DT and DTL?
http://support.automation.siemens.com/WW/view/en/63900230

2.8.3 Further time data types
Table 2-12: Time data types (only S7-1500)
Type Size Value range
LT#-106751d23h47m16s854ms775us808ns
LTime 64 bit up to

LT#+106751d23h47m16s854ms775us807ns

LTOD#00:00:00.000000000
LTIME_OF_DAY 64 bit up to

LTOD#23:59:59.999999999

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 20

http://support.automation.siemens.com/WW/view/en/98278626
http://support.automation.siemens.com/WW/view/en/58387452
http://support.automation.siemens.com/WW/view/en/63900230

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

284 Unicode data types

Data types WCHAR and WSTRING can be processed using unicode characters.
Table 2-13: Time data types (only S7-1500)

Type Size Value range

WCHAR 2 bytes -

Preset value:
WSTRING (4 + 2*n) byte 0 ..254 characters

Max. value: 0 ..16382

n = length of the character chain

Properties
e Processing characters in Latin Chinese or other languages, for example.
e Line breaks, page feed, tabulator, space character
e Special characters: Dollar sign, quotation marks

Example

. WCHAR# ‘a
e WSTRING#‘Hello World!‘

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 21

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

2.8.5

Advantages

Properties

Programming G
Entry-ID: 81318

VARIANT data type (only S7-1500)

A parameter of the VARIANT type is a pointer that can point to tags of different
data types. In contrast to the ANY pointer the VARIANT is a pointer with type test.
The target structure and source structure are checked at runtime and have to be

identical.

VARIANT is used, for example, as input for communication blocks (TSEND_C).
Figure 2-12: VARIANT data type as input parameter for the TSEND_C instruction

@ ...CPU 1516-3 PN/DP] » Program blocks » 16_TCP Send__OK

il E e e AEC8:[@EHw e
sl
TSEND_C a0
EN ENO
#sendL_RQ —REQ DONE —t#send_done
TRUE =—{CONT BUSY f—.
%DB3 ERROR[—#send_error
“PLC_1_Send_DB" —JCONNECT STATUS }— #send_status
*TCP_Send"
MODBUS —{paTA .
VARIANT

Beinhaltet in dem Fall die Uberpriifung
auf die Struktur TCON_IP_v4

e Integrated type test prevents faulty access.

e Due to the symbolic addressing of the variant tags, the code can be read

easier.

e Code can be programmed more efficiently and within a shorter time.

e Variant pointers are clearly more intuitive than ANY pointers.

e Variant tags can be used directly using system functions.

e Flexible and performant transfer of differently structured tabs is possible.

A comparison between ANY and Variant makes the properties apparent.

Table 2-14: Comparison ANY and Variant

ANY

Variant

Requires 10 Kbytes of memory with defined
structure

Does not require any memory space for the
user

Initialization either via assignment of the
data area or by means of filling the ANY
structure

Initialization by means of assigning the data
area of system instruction

Non-typed — Type of an interconnected
structure cannot be read out

Typed — Interconnected type as well as the
length for arrays can be determined

Partially typed — Length for arrays can be
determined

VARIANT can also be evaluated and
created via system instructions

uideline for S7-1200/S7-1500
674, V1.3, 09/2014

22

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

Recommendation

e Only use the VARIANT data type for indirect addressing if the data types are
not determined until the program is running.

e Check what you have used the ANY pointer for so far. In many cases, a pointer

is not required (see table below).

e Only use the VARIANT data type for indirect addressing if the data types are
not determined until the program is running.

- Using data type VARIANT as InOut formula parameter for creating generic
blocks which are independent of the data type of the actual parameters

(see example in this chapter).

- Use the VARIANT data type instead of the ANY pointer. Due to the
integrated type test, errors are detected early on. Due to the symbolic
addressing, the program code can be easily interpreted.

- Use the Variant instruction, for example, for type recognition (see following
example and Chapter 2.9.3 VARIANT instructions (only S7-1500))

e Use the indexed ARRAYs instead of ANY pointer to address ARRAY elements
(see chapter 3.6.2 ARRAY data type and indirect field accesses).

Table 2-15: Comparison ANY pointer and simplification with S7-1500

What are ANY pointers used for?

Simplification with S7-1500

processing

e e.g. transferring user-defined
structure by means of ANY pointers
to functions

Programming functions which can - | Functions with Variant pointer as InOut
process different data types parameter for blocks
(see following examples)
Processing of arrays - | Standard array functions
e e.g.reading, initializing, copying of e Reading and writing with
elements of the same type #myArray[#index] (see Chapter
3.6.2 ARRAY data type and indirect
field accesses)
e Copy with MOVE_BLK (see chapter
2.9.2 MOVE instructions)
Transferring structures and performant - | Transferring structures as InOut

parameters

e see Chapter 3.3.2 Call-by-reference
with InOut interface type

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

23

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

Example

With data type VARIANT it is possible to recognize data types in the user program
and react accordingly. The following code of FC “MoveVariant” shows a possible
way of programming.

e The InOut formal parameter “InVar” (data type VARIANT) is used to show a tag
independent of the data type.

e The data type of the actual parameter is recognized with the “Type_Of”
instruction.

e Using the “MOVE_BLK_VARIANT” instruction, the tag value is copied to the
different output formal parameters depending on the data type.

Figure 2-13: Formal parameter of FC “MoveVaraint”

MoveVariant
Name Data type Default value Comment

1 4 » Input
< « Output
as Outinteger Int Integer data
= OutReal Real Realdata
<@ = » OutiType “MyType® User defined PLC data type
< « InOut
4. InOutVariant Variant Variable data input
< » Temp
<1 « Constant
o= NO_CORRECT_DATA_TYPE Word 1628084

11 41 « Return 'E

- RN T I ST

CASE TypeOf (#InOutVariant) OF // Check datatypes
Int: // Move Integer

#MoveVariant := MOVE BLK VARIANT (SRC := #InOutVariant,
COUNT := 1,
SRC_INDEX := O,
DEST INDEX := O,

DEST => #OutlInteger);
Real: // Move Real

#MoveVariant := MOVE BLK VARIANT (SRC := #InOutVariant,
COUNT := 1,
SRC_INDEX := 0,
DEST INDEX := O,

DEST => #OutReal);
MyType: // Move MyType

#MoveVariant := MOVE BLK VARIANT (SRC := #InOutVariant,
COUNT := 1,
SRC_INDEX := 0,
DEST INDEX := O,

DEST => #OutMyType) ;
ELSE // Error, no sufficient data type
#MoveVariant := WORD _TO INT (#NO CORRECT DATA TYPE);
// 80B4: Error code of MOVE BLK VARIANT: Data types do
not correspond

END_CASE;

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 24

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.9 Instructions

NOTE If you want to copy values of not structured VARIANT variables, you can also
use VariantGet instead of MOVE_BLK VARIANT (see chapter
2.9.3 VARIANT instructions (only S7-1500))

2.9 Instructions

2.91 CALCULATE

With the CALCULATE instruction you can carry out mathematical calculations (e.g.
(IN1 + IN2) * IN3) that are independent from the data type. The mathematical
formula is programmed in the formula editor of the instruction.

Figure 2-14: CALCULATE instruction with formula editor

“Edit "Calculate” instruction

‘ OUT:= [(N1 + IN2) * IN3

CAL:ULIATE i
teal
GINT + IN2) ™ (INT - IN2)

EN ENO
Possible instructions:

And, Or, XOr, Swap, Not /v, + - *,/, Mod, Abs, Neg, Exp, **, Frac, Ln, Sin, ASin, Cos, ACos, Tan, ATan,
Sqr, Sqrt, Round, Ceil, Floor, Trunc

OUT = (1M1 + IN2) *I13

#Real_in1 — 111 OUT — #Real_Out
#real_In2 — N2

#Real_In3 — N3 3¢ ————
oK Cancel

Note For more information refer to the Online Help of the TIA Portal with the
“CALCULATE” instruction.

Advantages

¢ A mathematical formula only needs one instruction
e Time saving due to simple configuration

Properties

e Supports bit sequences, integers, floating-point numbers

e Supports numerous mathematical functions (all basic arithmetic operations,
trigonometric functions, rounding, logarithm, etc.)

e Number of inputs is extendable

Recommendation

e Always use the CALCULATE instruction for mathematical calculations instead
of many calls of instructions, such as, e.g. ADD, SUB, etc.

2.9.2 MOVE instructions

STEP 7 (TIA) provides the following MOVE instructions. The instruction
MOVE_BLK_VARIANT for S7-1200/1500 is new.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 25

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.9 Instructions

Table 2-16: Move instructions

Instruction

Typical use

Properties

MOVE

Copy value

Copy array

Copy the content of the parameter at
the IN input to the parameter of the
OUT output.

The parameters at the input and output
must be of the same data type.

The parameters can also be structured
tags (PLC data types).

Copy complete arrays and structures.

MOVE_BLK

Copy several
areas

Copy the content of an array to another
array.

The source and target array must be of
the same data type.

Copy complete arrays and structures.
Copy several array elements with

structures as well. In addition, start and
number of elements can be assigned.

UMOVE_BLK

Copy array
without
interruption

Copies the content of an array
consistently without the risk of the OB
interrupting the copying process.

The source and target array must be of
the same data type.

MOVE_BLK_VARIANT
(only S7-1500)

Copy array

Copies one or several structured tag(s)
(PLC data types).

Recognizes data types at runtime
Supplies detailed error information
Apart from the elementary and
structured data types, PLC data types,

arrays, and array DBs are also
supported.

Serialize
(only S7-1500)

Copy structured
data into byte
array

Several data records can be combined
into a single byte array and be sent to
other devices as a message frame.

Input and output parameters can be
transferred as data type Variant.

Deserialize
(only S7-1500)

Copy from a
byte array into
one/several
structure/s

Application case I-Device:

The | device receives several data
records in the input area which are
copied to different structures.

Several data records can be combined
into a single byte array. Deserialize
enables copying these to different
structures.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

26

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.9 Instructions

Figure 2-15: Instructions: serialize and deserialize (only S7-1500)

Array[0..7] of Byte Struct3
Byte0 Struct2
Byte1 Struct1
o Int

Real

Uint

.Byte7

Serialize

Recommendation
e Generally, you need to distinguish between MOVE, MOVE_BLK and
MOVE_BLK_VARIANT
- Use the MOVE instruction to copy complete structures.

- Use the MOVE_BLK instruction to copy parts of an ARRAY of a known
data type.

- Only use the MOVE_BLK_VARIANT instruction if you wish to copy parts of
ARRAYs with data types which are only known during program run-time.

Note UMOVE_BLK: The copy process cannot be interrupted by another activity of the
operating system. Therefore, the alarm reaction times of the CPU might increase
during processing of the instruction "Copy array without interruption".

For the complete description of the MOVE instructions, please refer to the TIA
Portal Online Help.

Note You will find further information in the following entry:

How do you copy memory areas in STEP 7 (TIA Portal)?
http://support.automation.siemens.com/\WW/view/en/59886704

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 27

http://support.automation.siemens.com/WW/view/en/59886704

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.9 Instructions

293 VARIANT instructions (only $7-1500)

Table 2-17: Move instructions

Instruction Typical use Properties
MOVE instructions
VariantGet Read value This instruction enables you to read
the value of a tag pointing to a
VARIANT.
VariantPut Write value This instruction enables you to write

the value of a tag pointing to a
VARIANT.

List

CountOfElements

Counting elements

With this instruction you poll the
number of ARRAY elements of a tag
pointing to a VARIANT.

Compare instructions

TypeOf() Determining the data | Use this instruction to poll the data
(only SCL) type type of a tag pointing to a VARIANT.
TypeOfElements() Determining the array | Use this instruction to poll the data
(only SCL) data type type of the ARRAY elements of a tag
pointing to a VARIANT.
Note For more VARIANT instructions, please refer to the online help of the TIA Portal.
294 RUNTIME

Using the "RUNTIME" instruction you measure the runtime of the complete
program, single blocks or the command sequences. You can call this instruction in

SCL (S7-1200/S7-1500) and in STL (S7-1500).

Note You will find further information in the following entry:

With S7-1200/S7-1500, how do you measure the time of a program section or
the complete program cycle at runtime?
http://support.automation.siemens.com/WWW/view/en/87668318

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3, 09/2014

28

http://support.automation.siemens.com/WW/view/en/87668318

2 S7-1200/1500 Innovations

Copyright © Siemens AG 2014 All rights reserved

2.10 Symbolic and comments

210 Symbolic and comments
2.10.1 Programming editor

Advantages

You can make the code easy to understand and readable for your colleagues with
the use of symbolic names and comments in your program.

The complete symbolic is saved together with the program code during the
download to the controller and allows fast maintenance of the plant when no offline
project is at hand.

Recommendation

e Use the comments in the programs in order to improve readability. Network title
comments are visible even if networks are collapsed.

¢ Design the program code in a way so that colleagues can understand the
program straight away.

In the following example you can see the extensive options for commenting the
program in the editors.

Example

In the following figure you can see the options for commenting in the LAD editor
(same functionality in FDB).

Figure 2-16: Commenting in the user program (LAD)

S

i B E‘Tlﬂi d‘;”;?l Cedad '='- & B

Interface

Name Data type Default value Retain Accessiblef...

Information:

- Network 1: [Start Engine I

I Start the enging
0.0 @0 1 %Q0.0
"Activate_ 3 Activate_2" “Start”
I {
— L { —

- Network 2: Speed_control

Call functicn block to set speed and acceleration

#Engine_speed_ FB for speed
Instance and

) acceleration
"Engine_speed” 4

EN ENO

Speed
Accaleration

The following comments are possible:
Block comment

Network title comment

Network comment

b~

Comment on instructions, blocks and functions (open, close, etc.)

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 29

2 S7-1200/1500 Innovations

Copyright © Siemens AG 2014 All rights reserved

2.10 Symbolic and comments

In the programming languages SCL and STL, it can be commented with // in every

row.
Example
Filling level:= Radius * Radius * PI * height;
// calculation of the filling level for medium tank
Note For further information, refer to the following entry:
In STEP 7 (TIA Portal), why are the display texts, titles and comments no longer
displayed after opening the project in the block editor?
http://support.automation.siemens.com/WWW/view/en/41995518
2.10.2 Comment lines in watch table
Advantages

e For better structuring it is possible to create comment lines in the watch table.

Recommendation

¢ Always use comment lines and sub-divide your watch table.
e Please also comment on the individual tags.

Example

Figure 2-17: Watch table with comment lines

it it
=
= - -_'H’
=
1

Name Address Disple

1 Building 122 floor 32 room 82

F I3 # - oo OO
5 Fq Fu &S . 1

ke

"Building” .FanSpeed1

[E1]

*Building” .Temperature1
*Buildina®.Liaht1

Building 173 filoor 33 room

wor 32 1o

*Building” FanSpeed2

= h N

*Building” Temperature2
*Buildina® Light2

8

9 || i Building 293 floor 69 room 45
10 "Building”.FanSpeed3

1 *Building”.Temperature3

1 it die ik 3

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 30

http://support.automation.siemens.com/WW/view/en/41995518

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.11 System constants

2.1

System constants

For S7-300/400 controllers the identification of hardware and software components
is performed by logic address or diagnostic addresses.

For S7-1200/1500 the identification is by system constants. All hardware and
software components (e.g. interfaces, modules, OBs, ...) of the S7-1200/1500
controllers have their own system constants. The system constants are
automatically created during the setup of the device configuration for the central
and distributed I/O.

Advantages

e You can address via module names instead of hardware identification.

Recommendation

e Assign function-related module names in order to identify the modules easily
during programming.

Example

In the following example you can see how system constants are used in the user

program.

Figure 2-18: “System constants” in the user program

Devices

0 ©

~ | 57-1500_Programming_V12...
B Add new device
th Devices & networks
 _il Robot_control [CPU 1516...
Y pevice configuration
%/ Online & diagnostics
» [Program blocks
» L3 Technology objects
» '@ External source files
v @ PLCtags
g Show all tags

PLC data types
Watch and force tables
Traces
5 Program info
CAPLCalarms
E) Text lists
~ [Local modules

3

Robot_arm_le:

Default tag table [104]

Il Robot_arm_right

Default tag table
Name a Data type
42 & port_1[PN)(2) Hw_Interface
43 & port_2[PN] Hw_Interface
4 & ror_2[PN)(1) Hw_Interface
45§35 Port_3[PN] Hw_Interface
46] port_a[pN] Hw_Interface
47 &l Port_S[PN] Hw_Interface

48 [port_s[PN]
49 & port_7[PN]
50] Port_8[PN] Hw_Interface
51 [G] PROFINET interface_1 Hw_lnterface
52 5] PROFINET interface_2 Hw_Interface
53 {5l PROFINET_IO-System... Hw_loSystem
54 {3) Rising_edge_Motor_1 Event_Hwint
Sl 5 Hw_SubModule
&
Robot_control[Com... Hw_Stujgdule
58 4 5] Robot_control[Displ... Hw_SubModul
5] Robot_control[Exec] Hw_SubModule

o, obot_control[MC] Hw_SubModule
6 LANCE _interface Hw_Interface
6. vitch_1[Head] Hw_SubMeodule
63 witch_1[IODevice] Hw_Device

Hw_Interface
Hw_Interface

» ’Diﬂ' \JEdlfii > ’.

hat Y5) Switch_1[Proxy] uﬁub&“li

[T

g g ED8ragdl Ctan’ Ji

Interface
Name Data type Comment
1 4@~ Input
Qs Initial_Call gool (11)] Initial call of this O,
aQ-s Remanence Bool =True, if remanent
@ v Temp
<| w 12

- -l == —

-

-

Block title: “Main Program Sweep (Cycle)®

Network 1:
GET_DIAG
[——EN ENQ ————,
“Global_DB" “Global_DB".
Diag_Mode — popE RET VAL — Diag_Ret_Val

“Global_DB"

LADDR CNT_DIAG

*Global_DB".
Diag_Diag — piag -

1. System constants of a controller can be found in the “PLC tags —
Default tag table” folder.

2. The system constants are in a separate tab in the “Default tag table”.

3. In this example the symbolic name “Robot_arm_left” was assigned for a DI

module.

You can also find the module under this name in the system constant tab.
In the user program “Robot_arm_left” is interconnected with the “GET_DIAG”

diagnostic block.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

31

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.12 User constants

Note

Note

2.12

Advantages

Properties

Open the “Device configuration” to quickly find the system constant for each
device.

Rail_0

<] [[
General 10 tags } System constants Texts

Name Type Hardware identifier | Commen

FIP OB Servo Fip 32768
OB_Main OB_PCYCLE 1
OB_Cyclicinterrupt 08_Cyclic 30
PLC_2[mC] Hw_5 ubModule 51
PLE_2[Common] Hw_5 ubModule 50
PLC_Z[Display] Hw_S ubModule 54
PLC_2[Exec] Hw_S ubModule 52
PLC 2 Hw_5 ubModule 43
DP_interface_1 Hw_Interface 60
PROFINET_interface_1 Hw_Interface 64
PROFINET interface_2 Hw_Interface 72
Pore_1[PN](1} Hw_Interface 73
Fort_1[PN] Hw_Interface B5
Pn—= 2[PN] Hw_Inte-5ce 66

You will find further information in the following entry:

What meaning do the system constants have for the S7-1200/1500 in STEP 7
(TIA Portal)?
http://support.automation.siemens.com/WW/view/en/78782836

User constants

Using user constants, constant values can be saved. Generally, there are local
constants for OBs, FCs and FBs and global constants for the entire user program
in a controller.

e User constants can be used for changing constant values globally or locally for
all usage locations.

e With user constants, the program can be made more readable.

e Local user constants are defined in the block interface.

e Global user constants are defined at “PLC tags”.

e The user program only enables read access to the user constants.
e For know-how protected blocks the user constants are not visible.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 32

http://support.automation.siemens.com/WW/view/en/78782836

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.13 Internal reference ID for controller and HMI tags

Recommendation

Example

Note

213

e Use the user constants for improved readability of the program and central

changeability of ...

- error codes,

- CASE instructions,
- conversion factors,
- natural constants ...

Figure 2-19: Local user constant of a block for CASE instructions

fb_TestProgram

Name Data type Default value Retain Ac

1 4@ ~ Input
2 d@n= ErrorNumber Int 0 Non-etain
3 @ » Output El [+
4 <@ » InOut
5 4@ » Sutic
6 @ » Temp
7 |~ Constant
8 ERROR_TEMPERATURE Int 10
S 4= ERROR_VOLTAGE Int 55
0 qge ERROR_TORQUE Int 89

<

#ERROR_V

ELSE

0 |END_CASE:

Figure 2-20: Global user constant of a controller

@ Tags lEI User constants I\Ej System constants

¥ 2
PLC tags
Neme Taq table Data type Value Comment
E GLOBAL_MIN Default tag table Int 5

[E GLOBAL_MAX | Defaulttag table Int 100

=2

Another application case of constants is available at the following FAQ:

How can you convert the unit of a tag in STEP 7 (TIA Portal)?
http://support.automation.siemens.com/WW/view/en/61928891

Internal reference ID for controller and HMI tags

STEP 7, WinCC, Startdrive, Safety and others integrate into the joint data base of
the TIA Portal engineering framework. Changes of data are automatically accepted
in all the locations in the user program, independent from whether this happens in

a controller, a panel or a drive. Therefore no data inconsistencies can occur.

If you create a tag, the TIA Portal automatically creates a unique reference ID. The

reference ID cannot be viewed or programmed by you. This procedure is internal

referencing. When changing tags (address), the reference ID remains unchanged.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

33

http://support.automation.siemens.com/WW/view/en/61928891

2 S7-1200/1500 Innovations

Copyright © Siemens AG 2014 All rights reserved

2.13 Internal reference ID for controller and HMI tags

In the figure below the internal reference to the data is displayed schematically.
Figure 2-21: Internal reference ID for PLC and HMI

PLC_1 HMI_1

PLC Symbol | Absolute | Internal PLC Internal HMI | HMI Symbol Access Connection
address | reference 1D reference ID name mode with PLC

000123 009876 Motor_1 <symbolic PLC_1
. access>

m
Valve_2 Q0.3 000138 000578 Valve_2 <symbolic PLC_1
access>

Note The ID will be changed if ...

e name is changed.
e type is changed.
e tagis deleted.

Advantages
e You can rewire tags without changing internal relations. The communication
between controller, HMI and drive also remains unchanged.
e The length of the symbolic name does not have an influence on the
communication load between controller and HMI.
Properties

If you change addresses of PLC tags, you only have to reload the controller. It is
not necessary to reload the HMI devices, since internally, the system addresses
with the reference IDs (see Figure 2-22: Changing address or adding row).

Figure 2-22: Changing address or adding row

PLC Tags

PLC tags
Name
1 <@ Motor_1

DB Elements
MName Datatype | Offset
1 @~ statc Adding row
2 @nw tag Bool . 0.0 & mgPLC

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 34

Copyright © Siemens AG 2014 All rights reserved

2 S7-1200/1500 Innovations

2.14 STOP mode in the event of errors

2.14 STOP mode in the event of errors

In comparison to S7-300/400 there are fewer criteria with the S7-1200/1500 that
lead to the “STOP” mode.

Due to the changed consistency check in the TIA Portal, the “STOP” mode for S7-
1200/1500 controllers can already be excluded in advance in most cases. The
consistency of program blocks is already checked when compiling in the

TIA Portal. This approach makes the S7-1200/1500 controllers more fault tolerant
to errors than their predecessors.

Advantages

There are only three fault situations that put the S7-1200/1500 controllers into the
STOP mode. This makes the programming of the error management clearer and

easier.
Properties
Table 2-18: Responses to errors of S7-1200/1500
Error S7-1200 S7-1500
1. | Cycle monitoring time RUN STOP, when OB80 is
exceeded once not configured
2. | Cycle monitoring time STOP STOP
exceeded twice
3. | Programming errors RUN STOP, when OB121 is
not configured
Error OBs:
o OBB80 “Time error interrupt” is called by the operating system when the
maximum cycle time of the controller is exceeded.
e 0OB121 “Programming error” is called by the operating system when an error
occurs during program execution.
For every error, in addition, an entry is automatically created in the diagnostic
buffer.
Note For S7-1200/1500 controllers there are other programmable error OBs

(diagnostic error, module rack failure, etc.).

More information on error responses of S7-1200/1500 can be found in the online
help of the TIA Portal under “Events and OBs”.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 35

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.1 Operating system and user program

3
3.1

3.2

Advantages

Programming G

General Programming

Operating system and user program

SIMATIC controllers consist of operating system and user program.

e The operating system organizes all functions and sequences of the controller
that are not connected with a specific control task (e.g. handling of restart,
updating of process image, calling the user program, error handling, memory
management, etc.). The operating system is an integral part of the controller.

e The user program includes all blocks that are required for the processing of
your specific automation task. The user program is programmed with program
blocks and loaded onto the controller.

Figure 3-1: Operating system and user program

— = | W 10

cyclic -
L
call =

For SIMATIC controllers the user program is always executed cyclically. The
“Main” cycle OB already exists in the “Program blocks” folder after a controller was
created in STEP 7. The block is processed by the controller and recalled in an
infinite loop.

Program blocks

In STEP 7 (TIA Portal) there are all familiar block types from the previous STEP 7
versions:

e Organization blocks
e Function blocks

e Functions

e Data blocks

Experienced STEP 7 users will know their way around straight away and new
users can very easily get familiar with the programming.

e You can give your program a good and clear structure with the different block
types.

e Due to a good and structured program you get many function units that can be
multiply reused within a project and also in other projects. These function units
then usually only differ by a different configuration (see chapter
3.2.8 Reusability of blocks).

e You project or your plant becomes more transparent. Error states in a plant
can be more easily detected, analyzed and removed. The maintainability of
your plant becomes easier. This is also the case for errors in programming.

uideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3, 09/2014 36

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.2 Program blocks

Recommendation

e Structure your automation task.

e Divide the entire function of your plant into individual areas and form sub-
function units. Divide these sub function units again into smaller units and
functions. Divide until you get functions that you can use several times with

different parameters.

e Specify the interfaces between the function units. Define the unique interfaces
for functionalities that are to be delivered by “third party companies”.

All organization blocks, function blocks and functions can be programmed with the
following languages:

Table 3-1: Programming languages

Programming language S7-1200 S7-1500
Ladder (LAD) v v
Function block diagram (FBD) v v
Structured control language (SCL) v v
Graph x v
Statement list (STL) x v

3.21 Organization blocks (OB)
H . K ” H
Figure 3-2: “Add new block” dialog (OB)
["Add new block: "X
MName:
| Main_1
& Program eycle Language: o i
& starnup
Number: B =1
ﬁ; & Time delayintemupt sl {02 - |
Organizmtion & Oyclic interrupt O manual
Bl & Hardware imtermupt @ sutematic
& Time error interrupt
& Diagnostic error interrupt
% & Pull or plug of modules rinr
BHEAC o s Ee A*Frogram cycle® OB is executed cyclically
Function bleck 4 Programming error and is the main block of the program. This is
& 10acc where you place the instructions that contral
E— & Time ofday ﬁaucr;spphcalmn.an call additional user
i & MCinterpolator
FC MCSeno
& synchronous Cycle
Function & swus
B Update
& Profile
e
Data block
more...
> | Additional information
[Add new and open oK [cancel |

OBs are the interface between the operating system and the user program. They
are called by the operating system and control, e.g. the following processes:

e Startup behavior of the controller

e Cyclic program processing

¢ Interrupt-controlled program processing

e Error handling
Depending on the controller a number of different OB types are available.

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3,

09/2014

37

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.2 Program blocks

Properties
e OBs are called by the operating system of the controller.

e Several Main OBs can be created in a program. The OBs are processed
sequentially by OB number.

Figure 3-3: Using several Main OBs

User program

Main_1 FB
= J
Main_y FB
0B200 :> —
Main_x |:|\V FB
OB300 Local

Recommendation

e Encapsulate the different program parts which should maybe be replaceable
from controller to controller, into several Main OBs.

¢ Avoid the communication between the different Main OBs. They can then be
used independent from each other. If you nevertheless exchange data
between the individual main OBs, use the global DBs (see chapter 4.2 No bit
memory but global data blocks).

e Divide all program parts that belong to each other into folders and store them
for reusability in the project or global library.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

38

3 General Programming

Copyright © Siemens AG 2014 All rights reserved

3.2 Program blocks

Figure 3-4: Storing program parts in order in the project library

v g Program blocks
I Add new block
& Flash_OFF [0B42]
4 Flash_ON [0B40]
& Mein [0B126) &
4 Start Labeling [0B41] 4
@ Process Log [DB1] g
~ [&] 10_ProcessLOG_OK
3 ProcessLOG_Main [0B125]
» [&z] ModifyLog__OK
w [tz] 12_Datalog__OK
4 Datalog_Main [0B123]

v [Project library

4 Datalog write line [FB3] 3 ——
& Datalog write page [FB4]] W E "‘"—m
@ Datalog process LOG [DB11] | v UL Project library
§il Dotlog write page DB [DB12] » [Types

w [tz] 14_Print serial__OK] ~ [] Master copies
4 Print Main [0B3030] + [t3] Process Log

[&z] 14_Print
28 Copy of 4 Program blocks |

|%z] 16_TCP Send I
4 Copy of 6 Program blocks |*

4 Print line [FB1]
& Print page [FB2]

w [tz] 16_TCP Send__OK g
4 TCP send Mein [0B124] / v %) 18_Mail
<& TCP send line [FB6) 4 Copy of 4 Program blocks
F S Mol
3 - T T D . . 3

For further information, please refer to chapter 3.7 Libraries.

Note You will find further information in the following entry:

Which organization blocks can be used in STEP 7 (TIA Portal)?
http://support.automation.siemens.com/\WWW/view/en/58235745

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

http://support.automation.siemens.com/WW/view/en/58235745

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.2 Program blocks

3.2.2 Functions (FC)

Figure 3-5: “Add new block” dialog (FC)

["Add new block

ame:
|Block_1 |
— o m
Bsnguage) -
= ey — B
OB [E |
e 0 mancal
block
@® automatic
= S —
FB g
Functions are code blocks or subroutines without dedicated memory.
Function block
Function
&
Data block
more...
> | Aaditional information
[Add new and open [ok [cancel |

FCs are blocks without cyclic data storages. This is why the values of block
parameters cannot be saved until the next call and has to be provided with actual
parameters when called.

Properties

FCs are blocks without cyclic data storages.

Temporary and out tags are undefined when called in non-optimized blocks. In
optimized blocks, the values are always preset to the default value (S7-1500
and S7-1200 Firmware V4). Thus, the resulting behavior is not accidental but
reproducible.

In order to permanently save the data of an FC, the functions of the global data
blocks are available.

FCs can have several outputs.
The function value can be directly reused in SCL in a formula.

Recommendation

Use the functions for continuously recurring applications that are called several
times in different locations of the user program.

Use the option to directly reuse the function value in SCL.
<Operand> := <FC name> (parameter list);

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 40

3 General Programming

3.2 Program blocks

Copyright © Siemens AG 2014 All rights reserved

Example
In the following example a mathematical formula is programmed in a FC. The result
of the calculation is directly declared as return value and the function value can be
directly reused.
Table 3-2: Reusing function value
Step Instruction
1. Create an FC with the mathematical formula (circular segment) and define the
“Return” value as the result for the formula.
Interface
] Name Data type Comment i
1 i 2 :f :np:i LReal Cl
3 Q- r LReal
4 @ v Ooutput
: G: InOut
8 u: Temp
S
10 €l v Retwmn
R L Circular_segment_return LReal
I # _segmy SQR(#z) * Al $hfé
B e S WP NP AV S S S
2. Call the FC with the circular segment calculation in any block (SCL).
<Operand> := <FC name> (parameter list);
Interface
Name Data type Default value Retain
1 4@ v Input
; < v Output
5 ‘ﬂ: InOut
,: —a.v Static [3) -
8 @- area_1 LReal Non-retain
s @as= ares_2 LReal Non-etain
0as height LReal Non-etain
na-s radius LReal Non-etain
249- return LReal Non-retain
— P
Note You will find further information in the following entry:

What is the maximum number of parameters you are allowed to define in
STEP 7 (TIA Portal) for a function in the S7-1200/S7-1500 CPU?
http://support.automation.siemens.com/WW/view/en/994 12890

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 41

http://support.automation.siemens.com/WW/view/en/99412890

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.2 Program blocks

3.23 Function blocks (FB)

Figure 3-6: “Add new block” dialog (FB)

["Add new block

Name:
|Block_1 |
— o LA
anguage. [-
=
H =
Organiztior © manual
e @ sutomatic
B ..
FB b
Function blocks are code blocks that store their values permanentlyin instance date blocks,
Function bleck <o that they remain available after the block has been executed.
Function
L)
Data block
more...
> | Aaditional information
[Add new and open [ok | [cancer |

FBs are blocks with cyclic data storage, in which values are permanently stored.
The cyclic data storage is realized in an instance DB.

Figure 3-7: Calling a function block

/ Instance DB
I My._f FBD _Block_ I

"My_FBD_Block"

~=EN
“actual_
tempereture” — Temperaturer Error4 ..

= Store ENO +
Call of a function block in the
block editor

i ot gn .-

Properties

e FBs are blocks with cyclic data storage.

e Temporary and out tags are undefined when called in non-optimized blocks. In
optimized blocks, the values are always preset to the default value (S7-1500
and S7-1200 Firmware V4). Thus, the resulting behavior is not accidental but
reproducible.

e Static tags keep the value from cycle to cycle

Recommendation

e Use the function blocks in order to create subprograms and structure the user
program. A function block can also be called several times in different locations
of the user program. This makes programming of frequently recurring program
parts easier.

e If function blocks are applied multiply in the user program, use separate
instances, preferably multi-instances.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 42

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.2 Program blocks

3.24

Properties

Instances

The call of a function block is called instance. The data with which the instance is
working is saved in an instance DB.

Instance DBs are always created according to the specifications in the FB interface
and can therefore not be changed in the instance DB.

Figure 3-8: Structure of the interfaces of an FB

Name Datentyp Defaultwert Remanenz

» Input
Bx Bool false Non-Retain
Pulse Bool false Non-Retain
54_Activ Boaol false Non-Retain

MNext_Station Int 1] Non-Retain In p ut
Output
Hx Bool false Non-Retain InOut
» INOut
Act_Station Int a Non-Retain
SHR_N Uint 0 Non-Retain Static

1
2
3
4
5
& f+ Output
7
]
9
1
1

1) + Static
12 PE_Sx Bool false Non-Retain

13 S Bool false Nor-Retain

14 s lEC Timer_IEC TIVER lonfcigin.
15 » Temp

16 MinTime Time - -
17 MaxTime Time i

The instance DB consists of a permanent memory with the interfaces input, output,
InOut and static. In a volatile memory (L stack) temporary tags are stored. The

L stack is always only valid for one cycle. |.e. temporary tags have to be initialized
in each cycle.

e Instance DBs are always assigned to a FB.

¢ Instance DBs do not have to be created manually in the TIA Portal and are
created automatically when calling an FB.

e The structure of the instance DB is specified in the appropriate FB and can
only be changed there.

Recommendation

3.2.5

e Program it in a way so that the data of the instance DB can only be changed by
the appropriate FB. This is how you can guarantee that the block can be used
universally in all kinds of projects.

For further information, please refer to chapter 3.4 Block interfaces as data
exchange.

Multi-instances

With multi-instances called function blocks can store their data in the instance data
block of the called function block. I.e. if another function block is called in a function
block, it saves its data in the instance DB of the higher-level FBs. The functionality

of the called block is thus maintained even if it is transferred.

The following figure shows an FB that uses another FB (“IEC Timer”). All data is
saved in a multi instance DB. It is thus possible to create a block with an
independent time behavior, for example, a clock generator.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 43

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.2 Program blocks
Figure 3-9: Multi-instances

Interface
Name
< ~ Input
4as Frequency
@ ~ Output
ans Q
] = Countdown
< v InOut

- sl

€ v Static

Switch-on] = = m';-:"
delay call @
a PT

ET

Advantages
e Reusability
e Multiple calls are possible

e Clearer program with fewer instance DBs

e Simple copying of programs

e Good options for structuring during programming

Properties

Multi-instance DB

FB Parameter

FB Statics
TOF_TIME

e Multi-instances are memory areas within instance DBs.

Recommendation

Use multi-instances in order to ...

e reduce the number of instance DBs.

e create reusable and clear user programs.

e program local functions e.g. timer, counter, edge detection.

Example

If you require the time and counter function, use the “IEC Timer” blocks and the
“IEC Counter” blocks instead of the absolutely addressed SIMATIC Timer. If
possible, also always use multi-instances here. This keeps the number of blocks in

the user program low.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

44

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.2 Program blocks

Figure 3-10: Library of the IEC Timer

« (@) Timer operations
IEC Timers
E i Generate pulse
2 TON Generate on-delay
& TOF Generate offdelay
2 TONR Time accumulator
o)) (TP Start pulse timer
) —(ToN)- Start on-delay imer
=) ~(ToF)- Start offdelay timer
«)| <(TONR}- Time accumulator
)| =RT- Resettimer
U
SIMATIC Timers
=T 5_PULSE Assign pulse timer parameters and stan
T s_PEXT Assign extended pulse timer parameters and start
£ 5_ooT Assign on-delay timer parameters and start
£ 5_oDTs Assign retentive on-delay timer parameters and stan
&I s_oFFDT Assign oftdelay imer parameters and stant
H)| <SF) Start pulse timer
)| —(SE) Start extended pulse timer
)| (sp) Start on-delay timer
)| ~(55) Start retentive on-delay timer
A} —(5F) Start offdelay timer
Note You will find further information in the following entry:

How do you declare the timers and counters for the S7-1500 in STEP 7

(TIA Portal)?

http://support.automation.siemens.com/WW/view/en/67585220

3.2.6 Global data blocks (DB)

Figure 3-11: “Add new block” dialog (DB

Add new block

Name:

X

[Data_block_1

— Type:
Organiztion Mbrher
block
£
Function bleck Description:

Function

e

Data block

more...

> | Aaditional information

Data blocks (DBs) are data areas in the user program which contain user data.
Select one ofthe following types
-Aglobal data block

'_ -An instance dsta block
EC

@oemoe 7]
E |
O manual

@ outomatic

[+ Add new and open

=

Variable data is located in data blocks that are available to the entire user program.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

45

http://support.automation.siemens.com/WW/view/en/67585220

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.2 Program blocks

Figure 3-12: Global DB as central data memory

B .-
~m

Advantages
e Well-structured memory area
e High access speed

Properties
e All blocks in the user program can access global DBs.
e The structure of the global DBs can be arbitrarily made up of all data types.

e Global DBs are either created via the program editor or according to a
previously created “user-defined PLC data type" (see chapter 3.6.3 STRUCT
data type and PLC data types).

Recommendation

e Use the global DBs when data is used in different program parts or blocks.

Note You will find further information in the following entry:

What access types, value columns and operating options are there for the global
data blocks in STEP 77?
http://support.automation.siemens.com/WW/view/en/68015631

3.27 Downloading without reinitialization

In order to change user programs that already run in a controller, S7-1200
(firmware V4.0) and S7-1500 controllers offer the option to expand the interfaces of
optimized function or data blocks during operation. You can load the changed
blocks without setting the controller to STOP and without influencing the actual
values of already loaded tags.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 46

http://support.automation.siemens.com/WW/view/en/16818490

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.2 Program blocks

Figure 3-13: Downloading without reinitialization

Execute the following steps whilst the controller is in RUN mode.

1.
2.
3.

Advantages

Properties

Enable “Downloading without reinitialization”
Insert new defined tags in existing block
Load block into controller

Reloading of new defined tags without interrupting the running process. The
controller stays in “RUN” mode.

Downloading without reinitialization is only possible for optimized blocks.

New defined tags will be initialized. The remaining tags keep their current
values.

A block with reserve requires more memory space in the controller.

The memory reserve depends on the work memory of the controller; however it
is max. 2 MB.

It is assumed that a memory reserve has been defined for block.
By default the memory reserve is set to 100 byte.

The memory reserve is defined individually for every block.

The blocks can be variably expanded.

Recommendation

Define a memory reserve for blocks that are to be expanded during
commissioning (e.g. test blocks). The commissioning process is not interrupted
by download of new defined tags. The current values of already existing
variables are kept.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 47

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.2 Program blocks

Example: Setting memory reserve in block

Note

The following table describes how you can set the memory reserve for the
downloading without reinitializing.

Table 3-3: Setting memory reserve

Step Instruction

~ [PLC_1 [CPU 1516-3 PN/DP]
Y Device configuration
% Online & diagnostics
~ [Program blocks.
B Add new block
& Msin [081]
@ Global_De [02]
[Foiobal. 06 _re-init (Do g
B =

» [Technqf
» LG Externdl '
» [@ PLC tags

2 Copy culac
= Paste Cerlav
» [PLC data o)
» [Watch and force tables
% Traces X Delete Del
j Program info Rename 3
(4 PLCalarms Compile ,
& Textlists Download to device >
» [l Local modules & Goonline culsk |
» [WPLC 2[CPUTSITAPN] | ¥
> M PLC3 [CRUT21SCDADTIDY o Generate source from blocks
» [§ Common data
» [£) Documentation settings
» [Languages & resources
b B Online access
b [Card Readeriuse memory

Open

Apply snapshot values as start values »

Copyas text

| crosseference information ~ shiftsF11
X Cross-references F11
| & call structure
8 Assignmentlist
Switch programming language »
Know-how protection
& print culsp
& Print preview, |

IETFroperies - Awenter]|

> —— o ——

1. Right-click any optimized block in the project navigator and select “Properties”.

General

Download without reinitializati

Information
Time stamps

Compilation l Memory reserve: [100 Byces | (100 bytes available) I
Protection || Enable download without reinitialiation for 2

retentive tags.

Bytes | (0bytes available)

1. Click “Download without reinitialization”.
2. Enter the desired memory reserve for “Memory reserve”.
3. Confirm with "OK".

You can also set a default value for the size of the memory reserve for new

blocks in the TIA portal.

In the menu bar, navigate to "Options — Settings" and then to "PLC programming

— General — Download without reinitialization®.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

48

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.2 Program blocks

Example: Downloading without reinitialization

In the following example it is displayed how to download without reinitialization.
Table 3-4 Downloading without reinitialization

Step Instruction
1. Requirement: a memory reserve has to be set (see above)
2. Open, e.g. an optimized global DB.
3. Click the “Download without reinitialization” button and confirm the dialog with
“OK”
TR Need
Global_DB_Re-init
Name Start value Retain
1 4@ v Sutic
2 @l= » pete (]
3 @- Date_ret ()
i a-s Check_reinit Bool O
4. Add a new tag (retentive tags are also possible).
FF R NezsB B2
Global_DB_Re-init
Name Data type Start value Retain
@ v Static
2 4@ = » Date o
3 @+ Date_ret Int
4 s Chockisiic gl
slas Testver Byte]
6 I«u = Test_var_2_retain Byte ~ |
5. Download the block to the controller.
6. Result:
e Actual values of the block remain
Note Further information can be found in the online help of the TIA Portal under

“Loading block extensions without reinitialization”.

You will find further information in the following entry:

What options does the S7-1500 provide for downloading data in RUN?
http://support.automation.siemens.com/\WWW/view/en/76278126

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3,

09/2014

49

http://support.automation.siemens.com/WW/view/en/76278126

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.2 Program blocks

3.2.8 Reusability of blocks

The block concept offers you a number of options to program in a structured and
effective way.

Advantages
e Blocks can be used universally in any location of the user program.
e Blocks can be used universally in different projects.

e When every block receives an independent task, a clear and well-structured
user program is automatically created.

e There are clearly fewer sources of errors
e Simple error diagnostic possible.

Recommendation
If you want to reuse the block, please note the following recommendations:

e Always look at blocks as encapsulated functions. l.e. each block represents a
completed partial task within of the entire user program.

e Use several cyclic Main OBs to group the plant parts.

e Always execute a data exchange between the blocks via its interfaces and not
via its instances (see chapter 3.4.1 Block interfaces as data exchange).

e Do not use project-specific data and avoid the following block contents:
- Access to global DBs and use of individual instance DBs
- Access to tags
- Access to global constants

¢ Reusable blocks have the same requirements as know-how-protected blocks
in libraries. This is why you have to check the blocks for reusability based on
the “Block can be used as know-how protected library element” block property.
Compile the block before the check.

Figure 3-14: Block attributes

|Atlrlbutes |

[JIEC check

[} Handle errors within block

[Block can be used as know-how protected library element

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 50

3 General Programming

Copyright © Siemens AG 2014 All rights reserved

3.2 Program blocks

3.29 Auto numbering of blocks

For internal processing, required block numbers are automatically assigned by the
system (setting in the block properties).

Figure 3-15: Auto numbering of blocks

| Devices

300

Project tree

> w1z
¥ Add new device J Devices
gy Devices & networks HQOQ

- [Fw1s [CPU 1516-3 m/ﬂ.\g

Y Device confguration _ 1o Erojactfree] Lo
% Online & diagnostics —ﬁA:id T G J Devices
g Eroorem blocks oy Devices & networks 500 2
"M‘.’ new blodk ~ [Fw15 [CPU 1516-3 PN/DP]
> et j081) ¥ Device configuration [, 7 13 1
o % Online & disgnossics I Add newdvice
iEgl Frogram blocks & Devices & networks
I Add new block ~ (i FW15 [CPU 1516-3 PNIDP]
& Main [0B1] B pevi "

2 FIFOQueue [FB4]

E -SFIFOQueve_1 [FB4]

I Add new block

5 T 4 Main [081] &
0 Kopieren und Einfiigen & FIFOQueue [FB4]
Konflikt durch gleiche B ¥FiFOQuee_1 [FE1]
Blocknummer

@ Beim Ubersetzen nummeriert das
System den kopierten Baustein um und
16st den Konflikt.

Advantages

e Conflicting block numbers, e.g. as a result of copying, automatically deletes the
TIA Portal during compilation.

Recommendation

e Activate the automatic numbering of the blocks.
Figure 3-16: Setting in the block
b_Kiteboard [FB1] X

General

General
Information

General

Time stamps

Compilation Name: |fb_Kiteboard

Fmtrectmn e =

Attributes r —
Download without reinitialization e el -

1

4 Number: |

[) menual |
; | @ sutomatic_|

f oK] | concel |

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 51

3 General Programming

Copyright © Siemens AG 2014 All rights reserved

3.3 Block interface types

3.3 Block interface types

FBs and FCs have three different interface types: In, InOut and Out. Via these
interface types the blocks are provided with parameters. The parameters are
processed and output again in the block. There are two different options for this
parameter transfer.

3.31 Call-by-value with In interface type

When calling the block, the value of the actual parameter is copied onto the input
parameter of the block for the In interface type. For this, additional memory is
required.

Figure 3-17: Copying of the value to the input parameter

,My_int”
value: 31

Properties

e Each block displays the same behavior with connected parameters
e Values are copied when calling the block

3.3.2 Call-by-reference with InOut interface type

When calling the block the address of the actual parameter of the Input parameter
is referenced for the InOut interface type. For this, no additional memory is
required.

Figure 3-18: Referencing the value (pointer to data storage of the parameter)

"My_string"
value: 'test'

Properties

e Each block displays the same behavior with connected parameters
e Actual parameters are referenced with the block call

Recommendation

e Generally use the InOut interface type for structured tags (e.g. of the ARRAY,
STRUCT, STRING, type...) in order to avoid enlarging the required data
memory unnecessarily.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 52

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.4 Storage concept

3.4

3.41

Advantages

Storage concept

For STEP 7 there is generally the difference between the global and local memory
area. The global memory area is available for each block in the user program. The
local memory area is only available within the respective block.

Block interfaces as data exchange

If you are encapsulating the functions and program the data exchange between the
blocks only via the interfaces, you will clearly have advantages.

e Program can be made up modularly from ready blocks with partial tasks.
e Program is easy to expand and maintain.
e Program code is easier to read since there are no hidden cross accesses.

Recommendation

e If possible, only use the local tags. This is how the blocks can be used
universally and modularly.

e Use the data exchange via the block interfaces (In, Out, InOut), to ensure the
reusability of blocks.

e Only use the instance data blocks as local memory for the respective function
block. Other blocks shall not be written into instance data blocks.

Figure 3-19: Avoiding accesses to instance data blocks

FB

Local

P
o

] - FB

Local

If only the block interfaces are used for the data exchange it can be ensured that
all blocks can be used independent from each other.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 53

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.4 Storage concept

3.4.2

Figure 3-20: Block interfaces for data exchange

I

— Y

- /

Local

Global memory

Memories are called global when they can be accessed from any location of the
user program. There are hardware-dependent memories (e.g. bit memory, timers,
counters, etc.) and global DBs. For hardware-dependent memory areas there is the
danger that the program may not be portable to any controller because the areas
there may already be used. This is why you should use global DBs instead of
hardware-dependent memory areas.

Advantages

e User programs can be used universally and independent from the hardware.

e The user program can be structured modularly without dividing bit memory
address areas for different users.

e Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized for reasons of compatibility.

Recommendation

e Do not use any bit memory and use global DBs instead.

e Avoid hardware-dependent memory, such as, for example, clock memory or
counter. Use the IEC counter and timer in connection with multi-instances
instead (see chapter 3.2.5 Multi-instances). The IEC timers can be found under
“Instructions — Basic Instructions — Timer operations”.

Figure 3-21: IEC Timers

w |@| Timer operations

ﬁ IEC Timers
E i Generate pulse
2 TON Generate on-delay
& TOF Generate offdelay
4 TONR Time accumulator
H)| (TP} Start pulse timer
K| ~(Tom)- Start on-delay timer
H)| (TOF)- Start off-delay timer
H)| ~(ToNR)- Time accumulator
H)| =(RT)- Reset timer
o) ~(FT)- Load time duration

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 54

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.4 Storage concept

3.43 Local memory

e Static tags
e Temporary tags

Recommendation

e Use the static tags for values that are required for the next cycle.

e Use the temporary tags as cache memory in current cycle. The access time for
temporary tags is shorter than for static ones.

Note Optimized blocks: Temporary tags are initialized in any block call with the
“default value” (S7-1500 und S7-1200 Firmware V4).
Non-optimized blocks: Temporary tags are undefined for each call of the block.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 55

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.4 Storage concept

344 Access speed of memory areas

STEP 7 offers different options of memory accesses. For system-related reasons

there are faster and slower accesses to different memory areas.
Figure 3-22: Different memory accesses

Access speed . fast O intermediate
Non-structured Interface
elementary data type FC Name Data type Default value
a?a:meteryp .E' b
B 2 4@ » Output Retentive tags
3 @ F InOul
Non-retain tags & - Static

smtic_Monremanent_Var | Int 0

= static_Kenanent_Yar Int U
Temporary tags | 7 o@= Static_SetinlDC_Var Int 0
P ytag A = b Amay Var Aray[D.10]ofInt

‘ slow

ficta n v

[]

Hon-retain
Ketair
Set nlDD

Non-retain

Temp
= Temp_var- nt
»

Indexed accesses with
runtime tindex

L $hrray Var[“IncexedRccess™]

UPN LB | #l=2mp Ver)
Accesses to checks for at

runtime require
(register, indirect and
indirect DB accesses)

L QW ["Irdirecthccesa"]

OptimizedDD . -
ptp'""z . Copying between optimized SEICIEGLEE
DM ota c . . s C C|Ff i
S E— e and non-optimized blocks il ekl SR
- STATI 1 <dl| - Static)
2 4@an OptimizedDE_Var Int 2 4w Standa'dDB_Var Int 0.0

Access to optimized DBs

Access to non-optimized
blocks

Fastest accesses in the S7-1200/1500 in descending order

1. Optimized blocks: Temporary tags, parameters of an FC and FB, non-retentive

static tags

2. Optimized blocks whose accesses for compiling are known:
- Retentive FB tags
- Optimized global DBs

3. Access to non-optimized blocks

4. Indexed accesses with index that was calculated at runtime (e.g. Motor [1i])

5. Accesses that require checks at runtime

- Accesses to DBs that are created at runtime or which were opened

indirectly (e.g. OPN DBJi])
- Register access or indirect memory access

6. Copying of structures between optimized and non-optimized blocks (apart from

Array of Bytes)

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

56

3 General Programming

Copyright © Siemens AG 2014 All rights reserved

3.5 Retentivity
3.5 Retentivity

In the event of a failure of the power supply, the controller copies the retentive data
with its buffer energy from the controller’'s work memory to a non-volatile memory.
After restarting the controller, the program processing is resumed with the retentive
data. Depending on the controller, the data volume for retentivity has different
sizes.

Table 3-5: Retentive memory for S7-1200/1500

Usable retentive memory for bit memory,
Controller times, counters, DBs and technology
objects
CPU 1211C,1212C, 1214C, 1215C, 1217C 10 Kbytes
CPU 1511-1 PN 88 Kbytes
CPU 1513-1 PN 88 Kbytes
CPU 1515-2 PN, 1516-3 PN/DP 472 Kbytes
CPU 1518-4 PN/DP 768 Kbytes

Table 3-6: Differences of S7-1200 and S7-1500

S7-1200 S7-1500

Retentivity can only be set for bit memory Retentivity can be set for bit memory, times
and counters

Advantages

¢ Retentive data maintain their value when the controller goes to STOP and back
to RUN or in the event of a power failure and a restart of the controller.

Properties

For elementary tags of an optimized DB the retentivity can be set separately. Non-
optimized data blocks can only be defined completely retentive or non-retentive.

The retentive data can be deleted with the actions "memory reset" or "Reset to
factory settings" via:

e Operating switch on the controller (MRES)
e Display of the controller
e Online via STEP 7 (TIA Portal)

Recommendation

e Avoid the setting “Set in IDB”. Always set the retentive data in the function
block and not in the instance data block.
The “Set in IDB” setting increases the processing time of the program
sequence. Always either select “Non-retain” or “Retain” for the interfaces in the
FB.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 57

3 General Programming

Copyright © Siemens AG 2014 All rights reserved

3.5 Retentivity

Figure 3-23: Program editor (Functions block interfaces)

g DR RCaB Ia'=s"=F
Interface
Name Data type Default value Retain Al

1 4 v Input
2 - i
3 <4 v Output
4 . 4
5 <@ v InOut
6 -
7 4@ ~ Static
8 @n» area_1 LReal [=)] Non-retain | v
9 @-n» area_2 LReal Nane(uin
e height Loes! Retain

B Setin IDB
1ma- radius LReal ” ’
124a- return LReal Non-retain
=, s P

Figure 3-24: Program editor (Data block)

b Regag B ™ 0
DBControlPart i
Name Datatype Startvalue JRetain Accessible 1rom)
1 4+ Static 1 el ‘\}
2 @-e WiriteDBL Bool = M {
3 @n ViriteDEL_P Bool] =] é
4 @0 " WRTRETVAL Int m] 3
5 40 VWRTBusy Bool m = {
6 @ ReadDBL Bool =l - _}
7 4@® ReadDBLP Bool false] ~)
5 = READ_RET_VAL Int) m| - <
3 @ READ_Busy Bool] -
e U A i s VN e, PSS

Example: Retentive of PLC tags

The setting of the retentive data is performed in the tables of the PLC tags, function
blocks and data blocks.

Figure 3-25: Setting of the retentive tags in the table of PLC tags

Project1 » PLC_2 [CPU 1214C DTDT/DC] » PLC_2 » PLCtags » Default tag

p— <m Tags |l=] User§

= 3] o
Default tag table

Namne Data type Address Retain | Wisibl.. Canb
1 @ Srar_1_57-1200 Bool l0.0 =] =]
3 4 Step 1 571200 Bonl %101 =] =]
5 4@ clock bit 1 Bool =100 =))
4 Bool [5] =amon [+] =] =] i
s el e oo = =
[RFT e Retain memory ‘
7 4@ clock bits
e e Pt e onn Number of memory bytes starting at MBO: [j

Number of SIMATIC timers starting at TO:

Retentivity can be set from
address 0 onward!
e.g. from MBO, TO or CO

Number of SIMATIC counters starting at CO: [0

Available retentive memory (Bytes): [484000]

f OK \ [Cancel ‘

Example: Retentive counter

You can also declare instances of functions (timer, counter, etc.) retentive. As
already described in chapter 3.2.5 Multi-instances

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 58

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.6 Symbolic addressing

Figure 3-26: Retentive counter as multi-instance

Interface
Name Data type Default value Reain
4 - Static
= v [EC_Counter Instance IEC_COUNTER [=] Retain

|

PN A A TV AT VST O SN o e NS NT Y

4

= cu Bool f | Nen-retain

a
9 @
=
0@ o) 8ool S
1@ R Bool reEm—— |
2.|a L] LD Bool Retain
ER T Qu Bool false Retain
4 4 QD Bool Retain
54 L} PV Int 0 Retain
6 @

L] o Int Retain
<]]

4

» Block title:
- Network 1:

#IEC_Counter_
Instance
Ccu
Int
#CountSignal == cy
. —R Qv — #CurrentValue

Note If the retentive memory on the PLC is not sufficient, it is possible to store data in
the form of data blocks that are only located in the load memory of the PLC. The
following entry is described by taking the example of an S7-1200. This
programming also works for S7-1500.

You will find further information in the following entry:
In STEP 7 (TIA Portal), how do you configure data blocks with the "Only store in
load memory" attribute for an S7-12007?
http://support.automation.siemens.com/WWW/view/en/53034113
3.6 Symbolic addressing
3.6.1 Symbolic instead of absolute addressing
The TIA Portal is optimized for symbolic programming. This results in many
advantages. Due to the symbolic addressing you can program without having to
pay attention to the internal data storage. The controller handles where the best
possible storage is for the data. You can therefore completely concentrate on the
solution for your application task.
Advantages

e Easier to read programs through symbolic tag names
e Automatic update of tag names at all usage locations in the user program

e Memory storage of the program data does not have to be manually managed
(absolute addressing)

e Powerful data access
¢ No manual optimization for performance or program size reasons required
e IntelliSense for fast symbol input

e Fewer program errors due to type checking (validity of data types is checked
for all accesses)

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 59

http://support.automation.siemens.com/WW/view/en/53034113

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.6 Symbolic addressing

Recommendation

e “Don’t bother about the organization of the data storage*

e “Think” symbolically. Enter the “descriptive” name for each function, tag or
data, such as, for example, Pump_boiler_1, heater room_4, etc. This is how a
generated program can easily be read without requiring many comments.

e Give all the tags used a direct symbolic name and define it afterwards with a
right-click.

Example

Table 3-7: Example for creating symbolic tags

Step

Instruction

1.

Open the program editor and open any block.

Enter a symbolic name directly at the input of an instruction.

B2
“TMAIL_C_DB"
TMAIL_C
EN ENO
Q DONE =—i...
#Mail_TO 2 IF_S BUSY —i...
ERROR ==i...
SUBJECT STATUS
TEXT
MAIL_ADDR_
PARAM -~

i,

Right-click next to the block and select “Define tag...” in the context menu.

DB2
“TMAIL_C_DB"
™AIL_C
EN ENO
— REQ DONE
#Mail_TO Zjo_s BUSY
ERROR = ..

SUBJECT STATUS

TEXT

MAIL_ADDR_

PARAM -

Define tag... Ctrl+Shift+l
X cu Crl+X
18] Copy Ctrl+C
Jg) Paste Crrl+
¥ Delete Del

Goto 4
H’,':; Insert network Crrl+R

Insert STL network

Properties Alt+Enter

i e, .

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3,

09/2014

60

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.6 Symbolic addressing

Step Instruction

4. Define the tag.
Define tag

Section Address Datatype PLC tag table Comment

| Local In - String _"

Local Out ‘ Cancel
Local InOut
Local Static
Local Temp
Global Memory
Global Input
Globa] Output

There is an elegant method to save time, if you want to define several tags in a
network. Assign all tag names first of all. Then define all tags at the same time with
the dialog of step 4.

Note You will find further information in the following entry:

Why is universal definition and utilization of symbols in STEP 7 (TIA Portal)
obligatory for the S7-15007?
http://support.automation.siemens.com/WWW/view/en/67598995

3.6.2 ARRAY data type and indirect field accesses

The ARRAY data type represents a data structure that consists of several elements
of the same data type. The ARRAY data type is suitable, for example, for the
storage of recipes, material tracking in a queue, cyclic process acquisition,
protocols, etc.

Figure 3-27: ARRAY with 10 elements of the Integer (INT) data type

..IWrite » PLC_1 » Program blocks » Field_|

=% _..! oo
Field_Data
Name Data type
1 « Static
Counter Dint
3 | ~ Numbers array [0 .. 9] oflnt_‘
4 Numbers[0] Int
5 Numbers[1] Int
Numbers[2] int
Numbers[3] Int
8 Numbers[4] Int
9 Numbers[5] Int
10 Mumbers[6] Int
11 Mumbers[7] Int
12 Mumbers[8] Int
13 Mumbers[9] Int
4 1

You can indirectly access individual elements in the ARRAY with a runtime tag
(array [“index”]).

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 61

http://support.automation.siemens.com/WW/view/en/67598995

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.6 Symbolic addressing

Figure 3-28: Indirect field access

& ..» PLC_1[CPU 1516-3 PN/IDP] » Program blo 5
:
F#E b RepealB B> ¢
Field_Data ¥
Name Data type %
1 <@ = Static g
2 Gl = w Numbers | Array[0.9) ... [El=] g
4@ = Numbers[0] Dint
4 @ = Numbers[1] Dint LAD / FBD: MOVE
5 < [Numbers[2] Dint
6 @ = Numbers[3] Dint EN
7@ = Numbers[4] Dint “Field_Data".Numbers{#i] IN 3 OUT1 #Fieid_Number
8 4@ L Numbers[5] Dint
9 |4 L] Numbers[6] Dint P -
1049 = Numbers[7] Dint g .) .
1@ = Numbers[g] Dint SCL: 1 #Field Humber .= "Field Data”.wumbesrs[#i]:
2@ = Mumbers[9] Dint 2
5 —

Advantages

e Simple access since the data type of the ARRAY elements is irrelevant for the
access.

e No complicated pointer creation required
e Fast creation and expansion possible
e Useable in all programming languages

Properties
e Structured data type
e Data structure made of fixed number of elements of the same data type
e ARRAYSs can be created also multi-dimensional

e Possible indirect access with runtime tag with dynamic index calculation at
runtime

Recommendation

e Use ARRAY for indexed accesses instead of pointer (e.g. ANY pointer). This
makes it easier to read the program since an ARRAY is more meaningful with
a symbolic name than a pointer in a memory area.

e Asrun tag use the INT data type as temporary tag for highest performance.
e Use the “MOVE_BLK” instruction to copy parts of an ARRAY into another one.
e Use the “GET_ERR_ID” instruction to catch access errors within the Array.

Note You will find further information in the following entry:

How do you implement an array access with an S7-1500 with variable index?
http://support.automation.siemens.com/WW/view/en/67598676

How do you address securely and indirectly in STEP 7 (TIA Portal)?
http://support.automation.siemens.com/WW/view/en/97552147

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 62

http://support.automation.siemens.com/WW/view/en/67598676
http://support.automation.siemens.com/WW/view/en/97552147

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.6 Symbolic addressing

3.6.3 STRUCT data type and PLC data types
The STRUCT data type represents a data structure which is made up of elements
of different data types. The declaration of a structure is performed in the respective
block.
Figure 3-29: Structure with elements with different data types
FP ol Pl KT
Datablock
Name Datentyp Startwer
4] - Static
. ‘-ﬂ B w my 15t Struct E
3 4a Ll Interfaceld Ulnt B4
4 @ " D Uint 1
5 @ . ConnectionType Byre #
6 0 s ActiveEstablished Bool true
7 ® » RemoteAddress IP_vd
8 4 L] RemotePort Uint 2000
9 40 n LocalPort Uint 0
In comparison to structures, PLC data types are defined across the controller in the
TIA Portal and can be centrally changed. All usage locations are automatically
updated.
PLC data types are declared in the “PLC data types” folder in the project navigation
before being used.
Figure 3-30: PLC data types
5O © B|les s YD B <
Engine_Data
¥ |] Projectl Name Datatype Defaultv.. Visiblein ... Setting va.-
B Add new device 1 €@~ Power) struct 7 ™~
gh Devices & networks 2 a- MaxPower Int 1000 ™ B8
~ [PLC_1 [CPU 1516-3 PN/DP] 3 @-s cosfi Real 0.89 = 0O
JIY Device configuration 4 4@ v ElValues Struct ™~
% Online & diagnostics s @s u Int 10000 ™ B8
» gl Program blocks 6 @= | Int 335 =) 8
» (3 Technology objects 7 a@a-s f Int 50 ™~ (]
» '@} External source files 8 -
» [g PLCtags s @ n Int 1480 ™ B
10
Advantages

e Achange in a PLC data type is automatically updated in all usage locations in

the user program.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

63

3 General Programming

Copyright © Siemens AG 2014 All rights reserved

3.6 Symbolic addressing

Properties
e PLC data types always end at WORD limits (see the figures below).

e Please consider this system property when ...

- using different I/O areas (see chapter 3.6.4 Access to I/O areas with PLC
data types).
- using frames with PLC data types for communication.

- parameter records with PLC data types for I/O.
- non-optimized blocks absolute addressing.

Figure 3-31: PLC data types always end at WORD limits

PLC data type Elements

A A a
VarByte_0
1st WORD
Defined size MyType VarByte 1
3 bytes v
a
J VarByte_2
y
, 2nd WORD
I Actual size ! :
4 bytes | 1
e e e e 1V
Figure 3-32: PLC data type on I/O area
PLC data type I/O area
MyType Profilschiene_0
Name Nats tune s
1 |a VarByte_0 Byte
2 @ varBye_1 Byte 3 bytes
3 <a VarByte_2 Byte
[<] []
PLCngtOft l General ” 10 tags ” System constants || Texts |
ata type Name Tune Address | Taa tshle Comment
Dafault tag table 4@ DI_MyType ‘MyType" DIOO Dasfaulttagtable | 4N
Name: patat PP TP Y V—— e @ * DI_MyType “MyType® DIO. Dafaulttag table
1 @ ommpe [thmpe 5] =00 [+ 4 * DI_MyType "MyType’ DI02 Dasfaulttag table
5 q fes = @ * DI_MyType *MyType" DIO3 Dafaulttag table . .
- e Defined size
«
4 * ul_MyType MyType® w24 Lutdui1ag Geule 3 bytes
@ * DI_WyType *MyType® DI2.5 Dafsulttag table
P @ *oi_yTpe "MyType” DI2.6 Dafsulttag table
AT * N MTne ATma® N2 T Dafanlt tan rahle
@ * DI_MyType “MyType" DI 3.0 Dafault tag table
Iﬁl * DI_MyType “MyType™ DI3.1 Dafaulttag table I
<@ " DI_MyType “MyType®™ DI3.2 Dafaulttag table
Iﬂl * DI_MyType “MyType™ DI3.3 Dafaulttag table I
@ * DI_MyType ‘MTpe” D34 DeRuhmgumble | Actyal size
Iﬂl * DI_WyType "MyType" DI3.5 Dafault tag table
@ “ommpe wipe Di3s oamutegube |4 Dytes
las o, tumgs ooz _oveureopte |¥

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.6 Symbolic addressing

Recommendation

e Use the PLC data types to summarize several associated data, such as, e.g.
frames or motor data (setpoint, speed, rotational direction, temperature, etc.)

e Always use PLC data types instead of structures for the multiple uses in the
user program.

e Use the PLC data types for structuring into data blocks.

e Use the PLC data types in order to specify a structure for a data block. The
PLC data type can be used for any number of DBs. You can easily and
conveniently create as many DBs of the same structure and adjust them
centrally on the PLC data type.

Note You will find further information in the following entries:

How do you initialize structures into optimized memory areas for the S7-1500
STEP 7 (TIA Portal)?
http://support.automation.siemens.com/WWW/view/en/78678761

How do you create a PLC data type for an S7-1500 controller?
http://support.automation.siemens.com/WW/view/en/67599090

In STEP 7 (TIA Portal), how do you apply your own data types (UDT)?
http://support.automation.siemens.com/WW/view/en/67582844

Why should whole structures instead of many single components be transferred

for the S7-1500 when a block is called?
http://support.automation.siemens.com/WW/view/en/67585079

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

65

http://support.automation.siemens.com/WW/view/en/78678761
http://support.automation.siemens.com/WW/view/en/67599090
http://support.automation.siemens.com/WW/view/en/67582844
http://support.automation.siemens.com/WW/view/en/67585079

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.6 Symbolic addressing

3.6.4 Access to I/0 areas with PLC data types
With S7-1500 controllers, you can create PLC data types and use them for
structured and symbolic access to inputs and outputs.
Figure 3-33: Access to I/O areas with PLC data types
PLC data type
1 s bR RPeeasn3 BT
4 Engine
Marne Data ype Def?
PLC tag e
L _;? e pm mx . 4 En/ginf:[emp Int 5 0
@ Default tag table * L E
Name, Dats ype Address
1 @ Enginel_Faram "Engine” %I0.0 I
5 <Add news [E]]
FB call 'PuEngiBtéFuntru_
“fbEngineControl"
—EN ENO —
(Fengine1_rarsm)-{Engine.raram)
FB interface
Interface
@ Data type Defau
aifs + Engine_Param *Engine”]L:_l,
EngineOn Bool e
. = e nualControlActive Beool false
5 40 = EngineTemp Int 0
& <@ ~ Output
1. PLC data type with all required data
2. PLC tag of the type of the created PLC data type and start address of the I/O
data area (%Ix.0 or %Qx.0, e.g., %10.0, %Q12.0, ...)
3. Transfer of the PLC tag as actual parameter to the function block
4. Input of the function block is of the type of the created PLC data type
Advantages
e High programming efficiency
e Easy multiple usability thanks to PLC data types
Recommendation
e Use PLC data types for access to I/O areas, for example, to symbolically
receive and send drive telegrams.
Note Individual elements of a PLC data type of a tag can also be directly accessed in

Programming G

Entry-ID: 81318674, V1.3,

the user program:

“Engine1_
Param” "Enginel_
ManualControlActi Param”.
ve EngineOn

uideline for S7-1200/S7-1500
09/2014

66

3 General Programming

3.6 Symbolic addressing

Copyright © Siemens AG 2014 All rights reserved

3.6.5 Slice access

For S7-1200/1500 controllers, you can access the memory area of tags of the Byte,
Word, DWord or LWord data type. The division of a memory area (e.g. byte or
word) into a smaller memory area (e.g. Bool) is also called slice. In the figure below
displays the symbolic bit, byte and word accesses to the operands.
Figure 3-34: Slice access

r

“My|B_Variable*| BYTE
Operands in ——
blocks, DBs and “My_W_Variable* § | WORD
E/AM £
o~ “My;DW_Variable* DWORD
s “My_LW 1 Variable* LWORD
\ Ay
Examples
Slice access: “My_LW_Variable.%D1“ “My_DW_Variable.%W1“ “My_W_Variable.%X0“]
6X3 >2< >1< g Bit by bit
B7 B1 BO Bit by bit
w3 w1 wo Word by word
D1 DO DWord by
DWord
Advantages

e High programming efficiency
e No additional definition in the tag declaration required
e Simple access (e.g. control bits)

Recommendation

e Use the slice access rather than AT construct via accessing certain data areas
in operands.

Note You will find further information in the following entry:

How in STEP 7 (TIA Portal) can you access the unstructured data types bit-by-
bit, byte-by-byte or word-by-word and symbolically?
http://support.automation.siemens.com/WWW/view/en/57374718

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3, 09/2014 67

http://support.automation.siemens.com/WW/view/en/57374718

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.7 Libraries

3.7 Libraries

With the TIA Portal you can create independent libraries from different project
elements that can be easily reused.

Advantages

e Simple storage for the data configured in the TIA Portal:
- Complete devices (controller, HMI, drive, etc.)
- Controller programs, blocks, tags, monitoring tables
- HMIlimage, HMI tags, scripts, etc.

e Cross-project exchange via libraries

e Central update function of library elements

e Versioning library elements

e Fewer error sources when using control blocks through system-supported
consideration of dependencies

Recommendations

e Create the master copies for easy reusability of blocks, hardware
configurations, HMI images, etc.

e Create the types for the system-supported reusability of library elements:
- Versioning of blocks
- Central update function of all usage locations

e Use the global library for the exchange with other users or as central storage
for the simultaneous use of several users.

e Configure the storage location of your global library so it can automatically be
opened when starting the TIA Portal.
Further information is available at:
http://support.automation.siemens.com/WWW/view/en/100451450

Note You will find further information in the following entries:

How can you open a global library with write access rights in STEP 7 (TIA
Portal)?
http://support.automation.siemens.com/WW/view/en/37364723

3.71 Types of libraries and library elements

Generally there are two different types of libraries:
e "Project library"
e "Global library".

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 68

http://support.automation.siemens.com/WW/view/en/100451450
http://support.automation.siemens.com/WW/view/en/37364723

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.7 Libraries

The content consists of two storage types each:
e "Types"

e "Master Copies"

Figure 3-35: Libraries in the TIA Portal

Totally Integrated Automation
PORTAL

!

Options
¢ Library view
1]V[Project library I
% 5 (A [+

V10

#V1.00
v E‘Moror

V1.0

v] Master copies

_m Copyof PLC_1

v | Global libraries

» LL] Buttons-and-Switches
» L] Long Functions
» L] Monitoring-and-control-objects
» L] Documentation templates
» LU winac_mp
v L) User_Lib_Versions > Tinfo (Poject library)
v [Types
I Add new type
A& i
V101
V100

e (1) "Project library"
- Integrated in the project and managed with the project

- Allows the reusability within the project
e (2)"Global library"

- Independent library

- Use within several projects possible
A library includes two different types of storage of library elements:
e (3) "Master copies"

- Copy of configuration elements in the library (e.g. blocks, hardware, PLC
tag tables, etc.)

- Copies are not connected with the elements in the project.
- Master copies can also be made up several configuration elements.
° (4) llTypeSll

- Types are connected with your usage locations in the project. When types
are changed, the usage locations in the project can be updated
automatically.

Supported types are controller blocks (FCs, FBs), PLC data types, HMI
images, HMI faceplates, HMI UDT, scripts).

- Subordinate elements are automatically typified.
- Types are versioned: Changes can be made by creating a newer version.
- There can only be one version of a used type within a controller.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 69

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.7 Libraries

3.7.2

Advantages

Properties

3.7.3

Type concept

The type concept allows the creation of standardized automation functions that you
can use in several plants or machines. The type concept supports you with
versioning and updating functions.

You can use types from the library in the user program. This offers the following
advantages:

e Central update of all usage locations in the project
¢ Unwanted modifications of usage locations of types are not possible.

e The system guarantees that types always remain consistent by hindering
unwanted delete operations.

o If atype is deleted, all usage locations in the user program are deleted.

By using types you can make the changes centrally and update them in the
complete project.

Figure 3-36: Typifying with user libraries

Project 7T~ User library
1 SS <
. _ =TT~ 1 \.
- \ i

ez ‘ < / Master copy WlthOUt

ue @ typification

Use Central update to
newer version
Update
Use V2 ‘ Typ V1
with typification
Use V2 4 \| yp

Use V2

e Types are always marked in the project for better identification

Differences for typifiable objects for CPU and HMI

There are system-related differences between the typifiable objects for controllers
and HMI:

Table 3-8: Differences of types for controller and HMI

Controller HMI

Subordinate control elements are typified. Subordinate HMI elements are not typified.

Subordinate control elements are Subordinate HMI elements are not

instanced. instanced.

Control elements are edited in a test HMI images and HMI scripts are edited in a

environment. test environment. Faceplates and HMI -
UDTs are directly edited in the library
without test environment.

Further information on the handling of libraries can be found in the following
example.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 70

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.7 Libraries

3.74

Versioning of a block

Example: Creating a type

The following example shows you how the basic functions of the libraries are used

with types.
Table 3-9: Creating a type

Step

Instruction

1. Create a new PLC data type with “Add new data type” and create some tags.
Later on this is the subordinate type.

~ T PLC_1 [CPU 15163 PN/DP]
IIY Device configuration
%/ online &

~ g Program blocks
I Add new block

User_data_type_1

FF b ReaceB B~

~ T PLC_1 [CPU 15163 PNIDRS
[IY Device configuration g8
%/ Online & diagnostics

v ecenm blo
' Add new block

Name:
Block_1

Organiation
block

Function block

Language:

Function blocks are code blocks that store their vi
so that they remain available after the block has

LAD -
O manuai
@ sutomatic

v ‘Msin[os!]‘ Lome efault value ,’
» s Technology objects 1 4@ ON_OFF Bool & 4
» G} External source files 2 @ speed Int
» L@ PLCtags 3 4@ Position Real 0 1
~ [PLC data types T - D)
[e
2 Create a new function block with “Add new Block”. This is the higher-level type.

3. Define an input tag of the data type you have created. The PLC data type is
therefore subordinate to the function block.

Y Device configuration
%/ Online & diagnostics
~ ' Program blocks
¥ Add new block

~ T3 PLC_1 [CPU 1516-3 PN/DP] ;

Join 081
& Block_1 [FB1]

=y

G FE b AEE8 =0 ek

Interface
Name
<@z loout

Data type

Def

2 @ v o
= ON_OFF

a
< - Speed
Q|

“User_data_type_1" [3]

) Position
e

library.

~ 8 PLC_1 [CPU 1516-3 PN/DP]
Y oevice configuration

=y =

Y Online & diagnostics

~ gl Program blocks
I Add new blos)
Viain [OB1 4

Libraries

Options
Library view

s s

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3,

09/2014

71

3 General Programming

Copyright © Siemens AG 2014 All rights reserved

3.7 Libraries

Step Instruction
5. Optionally assign: Type name, version, author and comment and confirm the
dialog with “OK”.
Add type X

o Define the properties for the new types.

The selected objects will be stored as new types in the library.
Specify the version, author and comment for this.
Neme of ppe:
Version: 00|.1

Author: | User

Comment:

1 There are dependent objects which will be stored as new types in the library.
|
6. The subordinate PLC data type is automatically also stored in the library.

Options
#| Library view "
v | Project library
% = [an =
~ L Project library ‘

g 7o ;

B Add new type

Example: Changing a type
Table 3-10: Changing a type

Step Instruction

1. Right-click the block in the “Project library” and select “Edit type”

Libraries

Options
Library view

v | Project library <

= Al -

L] Project ibrary ¢
v B pes }

I Add new type
o

Assign version
Library managemen

et 321 Copy

[Global libra{ -~ -°*

F W &
Al PV Del I
» Ll Buttonsand] paname 2 | %

» [Long Functi¢

» () Monitoring-g i iy
» LU Documentaq &° "Nt Preview

» [WinAC_MP |G Properties_. AltsEnter

R s WU W

CurlsP

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.7 Libraries

Step

Instruction

with “OK”.

Edit type

o Select a test environment to edit the type.

After & testinstance is selected, s new "in testing”
TestinStaNce you want o use:

Instance Type and version Path
1 4 Block_1 [FB1]

Block_1V0.0.1 PLC_1 [CPU 1516-3 PN/IDP[iProgra

2. Select which controller is to be used as test environment and confirm the dialog

X

type version is created in the library. Select the

ok] concer |

selected as test environment.

If several controllers in the project use the selected block, a controller has to be

marked with “in test”.

3. The library view opens. A new version of the block has been created and is now

Project Edit View Insert Online Options Tools
N H soepoiet 2 Y 1 5 X s (i

Window Help
W MG B D ¥ coonline N cooffine R A MA > |1

‘ [

» [7] Master copies

Options
B Library view Rlax=ss e A=A 30 &
py v | Project library Interface
= (Al &2 Neme Data type
1 @~ Input
~ 1] Project libra
J:l JTwes " B *Ucer_data_tne 1"
Q-?Add new type 2@ - ON_OFF Bool
— ~ & Block_1 4 @ = Speed Int
& vo_uzlm test] 5 @ = Position Real
.r- vnni 6 Qe In_2 word
= vo5s B
v [User_data_type_1 7 .
V001 & @ v Output
9 .

4 i == T oy o2
|- q9F == 0 = 2

v | Global libraries

¥ Block title:

FdYa b Al
» (L] Buttons-and-Switches

» LU Long Functions

» L] Monitoring-and<control-objects

» L] Documentation templates

» LU winAC_mP

» i User_tib_versions

% Network 1:

4. Add another input tag.

the following steps.

G F P e BERDEt AN Rl =" &P
Interface
Name Data type Defaultvalue | Retain {
-~ input
2@ v N1 *User_data_type_1" Non-retain J
a - ON_OFF Bool Non-retain
: @ = speed Int Non-retain t
R — o !
Q= in2 Word
e
el BN o prn g N g B, pemadn

In this place you have the option to test the change on the block by loading the
project onto a controller. When you have finished testing the block, continue with

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

73

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.7 Libraries

Step

Instruction

5.

Click the “Release version” button.
B [Gooniine ¥ Gooffine Jo MM IA % — 1I{ez s

$7-1500_Libraries_V12_SP1 » PLC_1 [CPU 1516-3 PN/DP] \

GEFF B ARD8EEW 6.
Interface
Neme Data type Default value
<~ Input
2 @ » I “User_data_type_1" Non-eta
3 @l IN_2 word @ 162 Non-ret:
-.; m. B '-—r-'— .

A dialog box opens. Here you can store a version-related comment. Confirm the
dialog with “OK”.

ETES0E TYPE VETZTOn 1B

o Define the properties for the released type version.

Anew version will be released for the selected types.
Assign them common properties or confirm the recommended properties.

Name oftype: |Block_1
Version: | 00].2
Author: |User

Comment:

v | Options
[T Delete unused type versions from the library

|

(&

If there are several usage locations of the block in different controllers of the
project, you can update them all at the same time: “Update instances in the
project”.

If older versions of the element are no longer required you can delete them by
clicking “Delete unused type versions from library”

Close the library view with “Close library view”

Project Edit View Insert Online Opd
5§ (% [soveproject @ X 18] Ta

Libraries

v 1] Project library
~ [Types
B Add new type
v & Block_1
E AV 0.0.2 [in test]
V001
~ [User_data_type_1
i3V 001

B IS REARDE P

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3,

09/2014 74

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.8 Increasing performance with process interrupts

3.8

Increasing performance with process interrupts

The processing of the user program can be influenced by events such as process

interrupts. When you need a fast response of the controller to hardware events
(e.g. arising edge of a channel of a digital input module), configure a process

interrupt. For each process interrupt a separate OB can be programmed. This OB

is called by the operating system of the controller in the event of a process
interrupt. The cycle of the controller is therefore interrupted and continued after

processing the process interrupt.
Figure 3-37: Process interrupt is calling OB

Event

JRCCIN]

e.g. rising L
edge EO.0

Hardware

interrupt
OB40

£ e.g. falling
edge E6.1

Hardware

interrupt_1
OBxxx

In the following figure you can see the configuration of a “hardware interrupt” in the

hardware configuration of a digital input module.

Figure 3-38: Configuring hardware interrupt

Rail_0

A

Device overview

J General] 10 tags | Texts

» General
v Module parameters
General
v Channel template
Inputs
DI Configuration
v D6
General
¥ Inputs
Channel 0

Hardware interrupts

[V Enable rising edge detection:

Eventname: |Rising edge0

Hardware interrupt: | HI_channel_0_rising_ed{~ |

Priority E JHI_channel_0_rising_edge [OB40]

4 Hi_channel_0_falling_edge [0B41]|
—

| AT oai gl dn

Advantages

e Fast system response to events (rising, falling edge, etc.)
e Each event can start a separate OB.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

75

3 General Programming

Copyright © Siemens AG 2014 All rights reserved

3.8 Increasing performance with process interrupts

Recommendation

e Use the process interrupts in order to program fast responses to hardware
events.

e If the system responses are not fast enough despite programming a process
interrupt, you can still accelerate the responses. Set as small an “Input delay”
as possible in the module. A response to an event can always only occur if the
input delay has lapsed. The input delay is used for filtering the input signal in
order to, for example, compensate faults such as contact bounce or chatter.

Figure 3-39: Setting input delay

0

Rail_0
< ‘}
Device overview
g
J General] 10 tags | Texts l |
» General 4
¥ Module parameters s =
General Apply to all channels that use the template 4
v Channel template <
Inputs Diagnostics €
DI Configuration I
~ DI16 [No supplyvoltage L+ 1
General 7 Wire break

¥ Inputs
Channel 0
Channel 1

Channel 2 " . —
inputdeiay: | 0.05 ms | v
Channel 3
|

Channel 4 0.1
Channel 5 04
16
Channel 6 32
Channel 7 I 128
Chocccia 20

Channel 8 i

Input parameters

v Y

s WE S

T

v

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 76

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.9 Other performance recommendations

3.9 Other performance recommendations

Here you can find some general recommendations that enable faster program
processing of the controller.

Recommendation

Note the following recommendations for programming S7-1200/1500 controllers in
order to achieve a high performance:

e LAD/FBD: Disable “generate ENO” for blocks. This avoids tests at runtime.

e STL: Do not use registers since address and data registers are only emulated
for compatibility reasons by S7-1500.

Note You will find further information in the following entry:

How do you disable the ENO enable output of an instruction?
http://support.automation.siemens.com/\WW/view/en/67797146

How can you improve the performance in STEP 7 (TIA Portal) and in the S7-
1200/S7-1500 CPUs?
http://support.automation.siemens.com/\WWW/view/en/37571372

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 77

http://support.automation.siemens.com/WW/view/en/67797146
http://support.automation.siemens.com/WW/view/en/37571372

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and tricks

3.10 SCL programming language: Tips and tricks
3.10.1 Using call templates
Many instructions of the programming languages offer a call template with a list of
existing formal parameters.
Example
Table 3-11: Easy expanding of the call template
Step Instruction
1. Drag an instruction from the library into the SCL program. The editor shows the
complete call template.
= g gﬁ Gy =D G=aE =" ViBasic instructions
Interface e Lo
e e ik + [i] Bitlogic operations =
il ~ input » [®] Timer operations =|
= w [+1] Counter operations
3 <0 » Output I_;'_C'U__I
ol - 2
s ; s As
=;" @ IEr 5_CD As |
2. Now fill in the required parameter and finish the entry with the “Return” button.
S D B 6T as
Interface
Name Data type
7 @ ~ static
\.; E : » ::s;ff:;kriﬂjnsmn ;L;lm
12 @ ~ Temp
3. The editor automatically reduces the call template.
1 ,AZE:itcun:e:jiInz:anceC“Ul;;:
4. If you want to edit the complete call later on again, proceed as follows.
Click into the call at any place and then click “CTRL+SHIFT+SPACE”. You are
now in the Call Template mode. The editor expands the call again. You can
navigate with the “TAB” button through the parameters.
5. Note: In the “Call Template” mode the writing is in italics.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

78

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and tricks

3.10.2 What instruction parameters are mandatory?

If you are expanding the call template, the color coding will show you straight away
what formal parameters of an instruction are optional and which ones are not.
Mandatory parameters are marked dark.

3.10.3 Drag & drop with entire tag names

In the SCL editor you can also use drag & drop functions. For tag names you are
additionally supported. If you want to replace one tag for another, proceed as
follows.

Table 3-12: Drag & drop with tags in SCL

Step Instruction

1. Drag the tag via drag & drop to the tag in the program that is to be replaced.
Hold the tag for more than 1 second before releasing it.

FE D8R Cead S
Interface
Name Data type
7 @ v sttic
8 4@ = » IEC_Counter_O_instan.. CTU_INT
5 l@ls mputcu ~ | ool
10@= InpurPv Int

12 @ v Temp
5 -

> hold for 1 second

The complete tag is replaced.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 79

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and tricks

3.10.4

Example

Note

3.10.5

Advantages

Example

Efficiently inserting CASE instruction

With the CASE instruction in SCL, it will be exactly jumped to the selected CASE
block condition. After executing the CASE block the instruction is finished. This
allows you, for example, to check frequently required value ranges more
specifically and easily.

CASE #myVar OF

5:

FCS5 (#myParam) ;
10,12:

FC10 (#myParam) ;
15:

FC15 (#myParam) ;
0..20:

FCGlobal (#myParam) ;
// FCGlobal is never called for the values 5, 10, 12 or 15!
ELSE
END_CASE;

CASE instructions also work with CHAR, STRING data types, as well as with
elements (see example in Chapter 2.8.5 VARIANT data type (only S7-1500)).

No manipulation of loop counters for FOR loop

FOR loops in SCL are pure counter loops, i.e. the number of iterations is fixed
when the loop is entered. In a FOR loop, the loop counter cannot be changed.

With the EXIT instruction a loop can be interrupted at any time.

e The compiler can optimize the program better, since it does not know the
number of iterations.

FOR #var := #lower TO #upper DO
#var := #var + 1; // no effect, Compiler -> Warning
END FOR;

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

80

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and tricks

3.10.6

Example

3.10.7

Example

3.10.8

Example

FOR loop backwards

In SCL you can also increment the index of FOR loops backwards or in another
step width. For this, use the optional “BY” key word in the loop head.

FOR #var := #upper TO #lower BY -2 DO
END FOR;

If you are defining “BY” as “-2”, as in the example, the counter is lowered by 2 in
every iteration. If you omit “BY”, the default setting for “BY” is 1

Simple creating of instances for calls

If you prefer to work with the keyboard, there is a simple possibility to create
instances for blocks in SCL.

Table 3-13: Easy creation of instances

Step Instruction

1. Give the block name a: followed by a "." (dot). The automatic compilation now
shows you the following.

& "Block_1_DB" Single instance
5ct m >>Create multinstance Mame:='Block_..
5 o »> Open "Call options® diale... Open “Call opti

51 5 5> Create single instance Name:='Block_

2. On the top you can see the already existing instances. In addition, you can
directly create a new single instance or multi-instance.

Use the shortcuts "s" or "m" to go directly to the respective entries in the
automatic compilation window.

Handling of time tags

You can calculate the time tags in SCL just as with normal numbers i.e. you do not
need to look for additional functions, such as, e.g. T_COMBINE but you can use
simple arithmetic. This approach is called “overload of operands”. The SCL
compiler automatically uses the suitable functions. You can use a reasonable
arithmetic for the time types and can therefore program more efficiently.

TimeDifference := TimeStamp 1 - TimeStamp 2;

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 81

Copyright © Siemens AG 2014 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and tricks

The following table summarizes the overloaded operators and which operation is

behind it:
Table 3-14: Overloaded operands for SCL
Overloaded operand Operation

Itime + time T_ADD LTime
Itime + time T_SUB LTime
Itime + lint T_ADD LTime
Itime + lint T_SUB LTime
time + time T_ADD Time
time + time T_SUB Time
time + dint T_ADD Time
time + dint T_SUB Time
Idt + Itime T_ADD LDT/LTime
Idt + Itime T_ADD LDT/LTime
Idt + time T_ADD LDT / Time
Idt + time T_SUB LDT/ Time
dtl + Itime T_ADD DTL/LTime
dtl + Itime T_SUB DTL /LTime
dtl + time T_ADD DTL/ Time
dtl + time T_SUB DTL/ Time
Itod + Itime T_ADD LTOD / LTime
Itod + Itime T_SUB LTOD / LTime
Itod + lint T_ADD LTOD / LTime
Itod + lint T_SUBLTOD /LTime
Itod + time T _ADD LTOD / Time
Itod + time T _SUBLTOD/ Time
tod + time T_ADD TOD / Time
tod + time T_SUB TOD / Time
tod + dint T_ADD TOD / Time
tod + dint T_SUB TOD / Time
dt + time T_ADD DT/ Time
dt + time T_SUB DT/ Time
Idt — Idt T_DIFF LDT
dtl —dtl T_DIFF DTL
dt—dt T_DIFF DT
date — date T_DIFF DATE
Itod — Itod T_DIFF LTOD
date + Itod T_COMBINE DATE /LTOD
date + tod T_COMBINE DATE / TOD

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

82

Copyright © Siemens AG 2014 All rights reserved

4 Hardware-Independent Programming

4.1 Data types of S7-300/400 and S7-1200/1500

4 Hardware-Independent Programming

To make sure that a block can be used on all controllers without any further
adjustments, it is important not use hardware-dependent functions and properties.

4.1 Data types of S7-300/400 and S7-1200/1500

Below is a list of all elementary data types and data groups.

Recommendation

e Only use the data types that are supported by the controllers on which the

program is to run.

Table 4-1: Elementary data types correspond to standard EN 61131-3

Description S7 - S7-1200 S7-1500
300/400

Bit data types BOOL
BYTE v v v
WORD
DWORD
LWORD x x v

Character type CHAR (8 bit) v

Numerical data INT (16 bit)

types DINT (32 bit) v v v
REAL (32 bit)
SINT (8 bit)
USINT (8 bit)
UINT (16 bit) x v v
UDINT (32 bit)
LREAL (64 bit)
LINT (64 bit) < < v
ULINT (64 bit)

Time types TIME
DATE v v v
TIME_OF_DAY
S5TIME v x v
LTIME < < v
L_TIME_OF_DAY

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 83

Copyright © Siemens AG 2014 All rights reserved

4 Hardware-Independent Programming

4.2 No bit memory but global data blocks

Table 4-2: Data groups that are made up of other data types

Description S7 - S7-1200 S7-1500
300/400
Time types e DT v < v
(DATE_AND_TIME)
° DTL x v v
e LDT < x v
(L_DATE_AND_TIME)
Character type e STRING v v v
Field e ARRAY v v v
Structure e STRUCT v v v

Y For §7-1500 the ARRAY data type is limited to 64 bit instead of 16 bit

Table 4-3: Parameter types for formal parameters that are transferred between blocks

Description S7 - S7-1200 S7-1500
300/400

Pointer e POINTER v % W)

e ANY

e VARIANT x v v
Blocks e TIMER v Nz v

e COUNTER

e BLOCK_FB v < v

e BLOCK_FC

e BLOCK DB

— v x x

e BLOCK_SDB

¢« VOID v v v
PLC datatypes | e PLC Data Type v v v

Y For optimized accesses, only symbolic addressing is possible

2 For S7-1200/1500 the TIMER and COUNTER data type is represented by
IEC_TIMER and IEC_Counter.

4.2 No bit memory but global data blocks

Advantages

e Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized for reasons of compatibility.

Recommendation

e The handling with bit memory (also system and clock memory bits) is
problematic, since every controller has a bit memory address area with a
different size. Do not use bit memory for the programming but always global
data blocks. This is how the program can always be used universally.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 84

Copyright © Siemens AG 2014 All rights reserved

4 Hardware-Independent Programming

4.3 Programming of "clock bits"

4.3 Programming of "clock bits"

Recommendation

For the programming of clock memory bits, the hardware configuration always has
to be correct.

Use a programmed block as clock generator. Below, you can find a programming
example for a clock generator in the SCL programming language.

Example

The programmed block has the following functions. A desired frequency is
specified. The “Q” output is a Boolean value that toggles in the desired frequency.
The “Countdown” output outputs the remaining time of the current state of “Q”.

If the desired frequency is smaller or equal 0.0, then the output Q = FALSE and
Countdown = 0.0.

Lwoe) L) LD L
—

0.5 Period: 2 seconds

= T#0S_703MS

Note The complete programming example is available for free download in the
following entry:

http://support.automation.siemens.com/WW/view/en/87507915

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 85

http://support.automation.siemens.com/WW/view/en/87507915

Copyright © Siemens AG 2014 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.1 Introduction

5
5.1

STEP 7 Safety in the TIA Portal

Introduction

Fail-safe S7-1500F CPUs are supported from TIA Portal V13 onward. In these

controllers, standard as well as the fail-safe programming in a device is possible.

For programming the fail-safe user programs, the SIMATIC STEP 7 Safety
(TIA Portal) option package is used.

Figure 5-1: Standard and safety program
S7-1500F

=N

¥

Standard user
program

M
C 1
LU

8

Advantages

Note

Note

Programming G

Safety program

e Uniform programming in standard and fail-safe program with an engineering

tool: TIA Portal
e Familiar programming in LAD and FBD
e Uniform diagnostics and online functions

Fail-safe does not mean that the program contains no errors. The programmer is

responsible for the correct programming logic.

Fail-safe means that the correct processing of the fail-safe user program in the

controller is ensured.

Further information on the topic of safety, as in the safety requirements or the
principles of safety programs, for example, are available at:

TIA Portal - An Overview of the Most Important Documents and Links - Safety
http://support.automation.siemens.com/WW/view/en/90939626

Applications & Tools — Safety Integrated
http://support.automation.siemens.com/WW/view/en/20810941/136000

STEP 7 Safety (TIA Portal) - Manuals
http://support.automation.siemens.com/WW/view/en/49368678/133300

uideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3, 09/2014

86

http://support.automation.siemens.com/WW/view/en/90939626
http://support.automation.siemens.com/WW/view/en/20810941/136000
http://support.automation.siemens.com/WW/view/en/49368678/133300

Copyright © Siemens AG 2014 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.2 Terms

5.2 Terms

This document consistently uses the terms with the following meaning.

Table 5-1: Safety terms

Term

Description

Standard user program

The standard user program is the program part,
which is not connected with F programming.

Safety program
(F program,
fail-safe user program)

The fail-safe user program is the program part
which is processed fail-safe independently of the
controller.

All fail-safe blocks and instructions are shaded
yellow at the software user interface (e. g. in the
project navigation) in order to distinguish blocks and
instructions of the standard user program.

The fail-safe parameters of F-CPUs and F-1/O are
shaded yellow in the hardware configuration.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

87

Copyright © Siemens AG 2014 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.3 Components of the safety program

5.3

Components of the safety program

Das safety program always consists of user-generated or system-generated F
blocks and the “Safety administration” editor.

Table 5-2: Components of the safety program

Description

Screen

1. “Safety administration” editor
- Status of the safety program
- F collective signature
- Status of the safety operation
- Creating/organizing F run-time
groups
- Information on the F blocks

- Information on F-conform PLC
data types

- Defining/changing the access
protection

2. User-created F blocks

3. System-generated F-runtime blocks

- Blocks contain status information
on the F run-time group.

4. System-generated F-1/O data blocks

- Blocks contain tags for evaluating
the F modules.

5. “Compiler blocks”
System-generated verification blocks

- These run in the background of
the controller and provide for fail-
safe processing of the safety
program.

- These blocks cannot be
processed by the user.

~ [PLC_1_Safety[CPU 1516F-3 PN/DP]
[IY Device configuration
Y. Online & diagnostics
@ Safety Administration
= g Program blocks
I Add new block
& Main [OB1]
@ DataSync [DB2]
20 FOB_1 [0B123]
4L+ Main_Safety [FB1]
@ Main_Safety DB [DB1]
- System blocks

» i Program resources

v . STEP 7 Safety
& F_Systeminfo_DE [DB30001] 3
& R1G1Sysinfo [DB30000]

- F-0 data blocks

4§ F00000_4/8F-DIDC24V_1 [DB30006]

a8 FOODD6_4F-DODC24VI2A_1 [DE30007] 4
o8 FOO011_F-DIBx24VDCHF_1 [DB30008]

o8 FO0017_F-DQ4x24VDC2APMHF_1 [DE30009]

» Compiler blocks
» [Technology objects 5
» @} External source files

b L FLCtags
~ g PLC data types
B Add new data type
i F_SYSINFO
! F-yType
¥ lg5 Watch and force tables

=
= Tenpps

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

88

Copyright © Siemens AG 2014 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.4 F-runtime group

54 F-runtime group

A safety program is always processed in an F-runtime group with defined cycle. An
F run-time group consists of a “Fail-safe organization block” which calls a

“Main safety block”. All user-generated safety functions are called from the

“Main safety block”.

Figure 5-2: F-runtime group in the “Safety administration” editor

F-runtime group 1 [RTG1]

Fail-safe organization block Main safety block

calls

[Main_Safety[Fa1] ||

Eventclass

Number |12_E

o8 J

[Main_safety pEfOBT] [~]

Phase shift |-U

Priority |1i |

F-runtime group

Warn cycle time ofthe runtime group | 120000 s

DB for runtime group communication | (1ons

Maximum cycle time of the runtime group | 120000 ps |
|

F-runtime group information DB | RTG1SysInfo

Advantages

¢ Runtime groups can simply be created and configured in the “Safety
Administrator”.

e F-blocks in the run-time group are automatically created.

Properties

e A maximum of two F run-time groups can be created.

5.5 F signature

Each F component (station, I/O, blocks) has a unique F signature. Using the
F signature it can be quickly detected whether an F device configuration, F blocks
or a complete station still corresponds to the original configuration or programming.

Advantages
e Simple and quick comparison of F blocks and F device configurations

Properties
e F parameter signature (without address of F-I/O)...
- only changed by adjusting the parameters.

- remains unchanged when changing the PROFIsafe address. However, the
F collective signature of the station changes.

e F block signature is only changed when the logic in the F block changes.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 89

Copyright © Siemens AG 2014 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.5 F signature

Example

Note

e F block signature remains unchanged by changing the
- block number,

block interface,

- block version.

Figure 5-3: Examples of F signatures

Program signature

Description Offline signature | Time stamp
Collective F<ignature 675CB803 7129/2014 4:20:41 PM (UTC +2:00)
F-blocks VN
— e
i | All F-blocks > &)
Description Used and compiled Function in safety program | Offline signature | Time:
w g Program blocks
2 FoB_1 [0B123] Yes FOB 0xB4427972 71291,
o2 FOB_2 [OB124] Yes F-OB OxF6658D19 712910
&L Main_Safety_1 [FB1] Yes FFB Ox61F8DE42 71291
4O Main_Safety_2 [FEO] Yes F-FB Ox55EDSCE2 71291
@ Main_Safety DB_1 [DB1] Yes I-DB for F-FB 0:x27E959F6 71291,
TVINRTST W T g Ve ID” e ~=TEgroTs 7

F-parameter

[IManual assignment of F-monitoring time

150 ms

F-destination address: _6553i]

Behavior after channel fault: | Passivate channel

["]F4i0 DB manual number assignment

1. F collective signature of the station in the “Safety administration” editor

2. F block signatures in the “Safety Administration” editor (can also be read out

from the properties of the block)

3. F parameter signature in the “Device view” at “Devices & Networks”

For S7-1500F controllers it is possible to read the F overall signature directly on
the installed display or in the integrated web server.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 90

Copyright © Siemens AG 2014 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.6 Assigning the PROFIsafe address at the F-1/0

5.6 Assigning the PROFIsafe address at the F-I/O

Each F-I/O device has a PROFIsafe address for identification and communication
with F controllers. When assigning the PROFIsafe address, two different

configurations are possible.
Table 5-3: Setting the F address

ET 200M / ET 200S
(PROFIsafe address type 1)

ET 200MP / ET 200SP
(PROFIsafe address type 2)

at the modules via DIL switch

and in the DIL switch position at the

the same.

Assigning the PROFIsafe address directly Assigning the PROFIsafe address

exclusively via TIA Portal

In the device configuration of the TIA Portal | The configured PROFIsafe address is

loaded onto the intelligent coding module of

periphery, the PROFIsafe address must be | the module.

Advantages

¢ Replacing an F module is possible without reassigning the PROFIsafe address
at ET 200MP and ET 200SP. The intelligent coding module remains in the
BaseUnit during module exchange.

e Simple configuration since TIA Portal indicates a faulty assignment of the

PROFIsafe address warnings.

e The PROFIsafe address of all F modules can be assigned at the same time

within an ET 200SP.

Note Further information on assigning the PROFIsafe address for the F-I/O is

available at:

SIMATIC Industrial Software SIMATIC Safety — Configuring and Programming
http://support.automation.siemens.com/\WWW/view/en/54110126

5.7 Evaluation of F-I/O

All of the current states of the respective F-1/0 are saved in the F-1/O blocks. In the
safety program the states can be evaluated and processed. The following
differences exist between S7-1500F and S7-300F/400F.

Table 5-4: Tags in the F-1/O DB with S7-300F/400F and S7-1500F

Tag in F-1/0 DB or value status F-1/0 with S7-300/400F F-1/0 with S7-1500F

in PAE

ACK_NEC v v

QBAD v v

PASS_OUT v v

QBAD_|_xx* v x

QBAD_O_xx* v x

Value status x v

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

91

http://support.automation.siemens.com/WW/view/en/54110126

Copyright © Siemens AG 2014 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.8 Value status (S7-1500F)

* QBAD_|_xx and QBAD_O_xx show you the validity of the channel value and
correspond to the inverted value status at S7-1500F (further information is
available in the following chapter).

5.8 Value status (S7-1500F)

In addition to the diagnostic messages and the status and error display, the F
module provides information on the validity of each input and output signal - the
value status. The value status is stored in the same way as the input signal in the
process image:

The value status informs about the validity of the respective channel value.
e 1:avalid process value is output for the channel.
e 0: a substitute value is output for the channel.

Table 5-5: Differences between Q_BAD (S7-300F/400F) and value status (S7-1500F)

Scenario QBAD (S7-300F/400F) | Value status (S7-1500F)
Valid values at the F-1/O (no error) FALSE TRUE
Channel error occurs TRUE FALSE
Channel error going (ACK_REQ) TRUE FALSE
Acknowledgement of the failure FALSE TRUE
(ACK_REI)

Properties
e The value status is entered into the process image of the inputs and outputs.
e Channel value and value status of an F-1/0O must only be accessed from the
same F run-time group.
Recommendation
e Forimproved readability you assign the ending “ vs”, e.g. “Tag In 1 VS”as
the symbolic name for the value status.
Example

Position of the value status bits in the process image using the example of an F-DI
8x24VDC HF module.

Table 5-6: Value status bits in the process image using the example of an F-DI 8x24VDC HF

Byte in Assigned bits in the F-CPU
the F-
CPU 7 6 5 4 3 2 1 0
x+0 Dl Dle Dls Dly Dl3 DI, Dl4 Dlo
x +1 Value Value Value Value Value Value Value Value
status status status status status status status status
for DI7 for Dlg for DIs for Dlg for Dl3 for Dl for DI4 for Dlp

X = module start address

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 92

5 STEP 7 Safety in the TIA Portal

Copyright © Siemens AG 2014 All rights reserved

5.9 Data types

Note More information about the value status of all ET 200SP modules is available at:

Failsafe CPUs - Manuals
http://support.automation.siemens.com/\WWW/view/en/87493352/133300

Failsafe I/0O modules - Manuals
http://support.automation.siemens.com/WW/view/en/55684717/133300

5.9 Data types

There is an unrestricted scope of data types for the safety programs of the S7-
1500.

Table: 5-7: Integer data types

Type Size Value range
BOOL 1 bit 0..1
INT 16 Bit -32.768 .. 32.767
WORD 16 Bit -32.768 .. 65.535
DINT 32 bit -2.14 .. 2.14 million
. T#-24d20h31m23s648ms to
TIME 32 bit T#+24d20h31m23s647ms

5.10 F-conform PLC data type

For safety programs it is also possible to structure data optimal with PLC data
types.

Advantages

e Achange in a PLC data type is automatically updated in all usage locations in
the user program.

Properties

e F-PLC data types are declared and used in the same way as PLC data types.

e F-PLC data types can use all data types which are allowed in the safety
program.

¢ Nesting of F-PLC data types within other F-PLC data types is not supported.

e In F-PLC data types, standard user programs can be used in the safety
program as well as in the standard user program.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 93

http://support.automation.siemens.com/WW/view/en/87493352/133300
http://support.automation.siemens.com/WW/view/en/55684717/133300

Copyright © Siemens AG 2014 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.10 F-conform PLC data type

Recommendation

e For accessing I/O areas you use F-PLC data types (as in Chapter 3.6.4 Access
to 1/0 areas with PLC data types)

e The following rules must be observed here:

- The structure of the tags of the F-conform PLC data type must match the
channel structure of the F-1/0.

- An F-conform PLC data type for an F-1/O with 8 channels is, for example:
e 8 BOOL tags (channel value)
e 16 BOOL tags (channel value + value status)

- Access to F-I/O is only permitted for activated channels. When configuring
a 1002 (2v2) evaluation, the higher channel is always deactivated.

Example
Figure 5-4: Access to I/0 areas with F-PLC data types

F-PLC Datentyp F-Peripherie = w2l 1 B
Name \ Data type Default value -
I @[F_nputcho\ | Bool)| false
2 4@ F_Input_Ch_1 Bool
3 @ F_Input_Ch_2 Bool
4 4@ Fnputch_3 Bocl
5 @ F_lnput_Ch_4 Bool o
6 4@ F_Input_Ch_5 Bool 00
7 <@ F_lnput_Ch_6 Bool 8 8
8 @ Finputch_? Bool 33
9 €@ F_lnputCh_0_VS Bool 8 8
10 <@ F_lnputCh_1_vs Beol) 00
11 @ F_InputCh_2_VS Bool false
12 €@ FnputCh 3_Vs Bool false <| 7]
13 €0 F_inputCh_4_ Vs Bool false
14 @ F_InputCh_5_V5 Bool
1540 F_InputCh_6_vs Boal General 10 tags || System constants ﬂ Texts
16 €@ F_lnputCh_7_Vs Bool Name Type Address Tag table
- <hdel o <@ F_lnput_1 "F-DIBx24VDCHF" |DI11.0 Defaulttag table
4@ *F_input_1 "F-DIBX24VDCHF" |DI11.1 Defaulttag table
PLC Variable <@ *F_Input_1 “F-DIBX24VDCHF® |DI11.2 Defaulttag table
<@ *F_lnput_1 “F-DISx24VDCHF" |DI113 Default tag table
PLC tags @ *F_input_1 *FDIB24VDCHF |DI114 Defaulttag table
Name Taa table Data tvoe Address @ *F_Input_1 “FDIBX24VDCHF® |DI11.5 Defaulttag table
1 Iﬂl F_Input_1 Defaulttag table “F-DISx24VDCHF" %I11.0 | * F_input_1 *EDIS24VDCHF® |D1116 Default tag table
2 <Add new> =]] 4@ *F_input_1 "F-DIBX24VDCHF® |DI11.7 Defaulttag table
@ *F_Input_1 “F-DIBX24VDCHF" | DI 12.0 Defaulttag table
* F_input_1 "F-DISX24VDCHF" |D112.1 Default tag table
<@ *F_lnput_1 “F-DIBX24VDCHF® |DI12.2 Defaulttag table
<@ *F_Input_1 “F-DI8X24VDCHF" | DI123 Default tag table
4@ *F_input_1 "F-DISX24VDCHF" |DI124 Defaulttag table
@ *F_Input_1 “FDIBX24VDCHF® |DI125 Defsulttag table
<@ *F_Input_1 “F-DIBx24VDCHF" |DI126 Default tag table
&0 *F Inout 1 "E-DIS24VDCHF" |DI127 Defaulttag table

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 94

5 STEP 7 Safety in the TIA Portal

Copyright © Siemens AG 2014 All rights reserved

5.11 TRUE/FALSE

5.11 TRUE/FALSE

If you require “TRUE” and “FALSE” signals in the safety programs, there are two
possible cases:

e as actual parameter at blocks
e as assignment to operations

Actual parameter at blocks

For S7-1500F controllers you can use the Boolean constants “FALSE” for 0 and
“TRUE” for 1 as actual parameter for supplying formal parameters during block
calls in the safety program. Only the keyword “FALSE” or “TRUE” is written to the
formal parameter.

Figure 5-5: “TRUE” and “FALSE” signals as actual parameter

FESTOP1_
Instance
ESTOP1
= EN Q—
#EStop — E_STOP Q_DELAY —
True =l= ACK_NEC ACK_REQ = ..
False =1= ACK DIAG
TIME_DEL ENOQ =—

Assignments to operations

If you require “TRUE” or “FALSE” signals at operations you can create them as in
the figure below.

e Use programming language FBD.

e Create a BOOL-type dummy tag (here “TrueFalse”).
e Connect the assignments to any operations.

¢ Interconnect the dummy tag to the assignment.

e Create a “normal” connection for “TRUE” signals.

e Negated connections are “FALSE” signals.
Figure 5-6: “TRUE” and “FALSE” signals as assignment to operations

gTrueFalse / TRUE
= &

ZTrueFalse FALSE

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 95

Copyright © Siemens AG 2014 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.12 Data exchange between standard program and F program

5.12

Data exchange between standard program and F
program

In some cases it is necessary to exchange data between the safety program and
the standard user program. The following recommendations should urgently be
noted in order to guarantee data consistency between standard and the safety
program.

Recommendations

5.13

¢ No data exchange via flags (see Chapter 4.2 No bit memory but global data
blocks

*)

e Concentrate the access between safety program and the standard user
program on two standard DBs.

Figure 5-7: Data exchange between standard safety program

Standard user program Safety program

4

B

Main FOB_1

Data buffer

\ 4
B B

Standard - DataToSafety DB

% v

Main_Safety

;

@

Main_Safety IDB

DataFromSafety DB ¢

Testing the safety program

In addition to the always controllable data of a standard user program you can
change the following data of a safety program in the deactivated safety mode.

e Process image of F-1/0

e F-DBs (except DB for F-run-time group communication), instance-DBs of
F-FBs

e F-/ODBs

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

96

Copyright © Siemens AG 2014 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.14 STOP mode in the event of F errors

Properties

Controlling F-1/O is only possible in F-CPU RUN mode.

From a watch table you can control a maximum of 5 inputs/outputs in a safety
program.

You can use several watch tables.

The trigger point needs to be set to “permanent” or “once” for “cycle start” or
“cycle end”.

Forcing is not possible for the F-1/0.

Setting stop points in the standard user program will lead to errors in the safety
program:

- Expiring of F cycle time monitoring

- Error during communication with the F-I/O
- Error at fail-safe CPU-CPU communication
- Internal CPU error

If you still wish to use stop points for testing, you need to deactivate the safety
mode beforehand. This leads to the following errors:

- Error during communication with the F-I/O
- Error at fail-safe CPU-CPU communication

5.14 STOP mode in the event of F errors

In the following cases, the STOP mode is triggered for F-CPUs:

In the "System blocks" folder you must not add, change or delete any blocks.

If the result of an instruction lies outside of the area permitted for the data type
(overflow). The cause of the diagnostic event is entered in the diagnostics
buffer of the F CPU.

There must not be any access to instance DBs of F-FBs which are not called in
the safety program.

If the “Maximal cycle time of the F run-time group” is exceeded, the F-CPU
goes to STOP. Select the maximal permitted time for "Maximum cycle time der
F run-time group" which can elapse between two calls of this F run-time group
(maximal 20,000 ms).

If the F run-time group, from whose DB for F-run-time groups tags shall be
read, is processed (main safety block of the F run-time group), the F-CPU goes
to STOP.

Editing the start values in instance DBs of F-FBs is not permitted online and
offline and can lead to STOP of the F-CPU.

The main safety block must not contain any parameters since they cannot be
supplied.

Outputs of F-FCs must always be initialized.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 97

Copyright © Siemens AG 2014 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.15 Migration of tags

5.15 Migration of tags

Information on migrating safety programs is available at:
http://support.automation.siemens.com/WW/view/en/21064024

5.16 General recommendations for safety

Generally, the following recommendations apply for handling STEP 7 Safety and F
modules.

e Whenever possible, always use F controllers. A later expansion of safety
functions can be realized very simply.

e Always use one password for the safety program to prevent unauthorized
changes. The password is set in the “Safety administration” editor.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014 98

http://support.automation.siemens.com/WW/view/en/21064024

© Siemens AG 2014 All rights reserved

6 The Most Important Recommendations

6

The Most Important Recommendations

Use optimized blocks

- Chapter 2.6 Optimized blocks

Use data type VARIANT instead of ANY

- Chapter 2.8.5 VARIANT data type (only S7-1500)
Structuring the program clearly and well

- Chapter 3.2 Organization blocks (OB)

Inserting instructions as multi-instance (TON, TOF ..)
- Chapter 3.2.5 Multi-instances

Reusable programming of blocks

- Chapter 3.2.8 Reusability of blocks

Symbolic programming

- Chapter 3.6 Symbolic addressing

When handling data, work with ARRAY

- Chapter 3.6.2 ARRAY data type and indirect field accesses

Creating PLC data types

- Chapter 3.6.3 STRUCT data type and PLC data types
Using libraries for storing program elements

- Chapter 3.7 Libraries

No memory bits but global data blocks

- Chapter 4.2 No bit memory but global data blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

99

© Siemens AG 2014 All rights reserved

7 Related Literature

7 Related Literature

Table 7-1
Topic Title
1\ Siemens Industry Online Support http://support.automation.siemens.com
\2\ Download page of the entry http://support.automation.siemens.com/WWW
/view/en/81318674
\3\ TIA Portal - An Overview of the Most | http://support.automation.siemens.com/\WWW
Important Documents and Links /view/en/65601780
\4\ STEP 7 (TIA Portal) manuals http://support.automation.siemens.com/WWW
/view/en/29156492/133300
\5\ S7-1200 Manuals http://support.automation.siemens.com/\WW
/view/en/34612486/133300
\6\ S7-1500 Manuals http://support.automation.siemens.com/\WW
/view/en/56926743/133300
\7\ S7-1200 Getting Started http://support.automation.siemens.com/WWW
/view/en/39644875
\8\ S7-1500 Getting Started http://support.automation.siemens.com/\WW
[view/en/78027451
\9\ SIMATIC S7-1200 / S7-1500 http://support.automation.siemens.com/\WW
Comparison list for programming /view/en/86630375
languages

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.3, 09/2014

100

http://support.automation.siemens.com/
http://support.automation.siemens.com/WW/view/en/81318674
http://support.automation.siemens.com/WW/view/en/81318674
http://support.automation.siemens.com/WW/view/en/65601780
http://support.automation.siemens.com/WW/view/en/65601780
http://support.automation.siemens.com/WW/view/en/29156492/133300
http://support.automation.siemens.com/WW/view/en/29156492/133300
http://support.automation.siemens.com/WW/view/en/34612486/133300
http://support.automation.siemens.com/WW/view/en/34612486/133300
http://support.automation.siemens.com/WW/view/en/56926743/133300
http://support.automation.siemens.com/WW/view/en/56926743/133300
http://support.automation.siemens.com/WW/view/en/39644875
http://support.automation.siemens.com/WW/view/en/39644875
http://support.automation.siemens.com/WW/view/en/78027451
http://support.automation.siemens.com/WW/view/en/78027451
http://support.automation.siemens.com/WW/view/en/86630375
http://support.automation.siemens.com/WW/view/en/86630375

© Siemens AG 2014 All rights reserved

8 History

8 History

Table 8-1

Version

Date

Modifications

V1.0

09/2013

First version

V1.1

10/2013

Corrections in the following chapters:
2.6.3 Best possible data storage in the processor on S7-1500

2.13 Internal reference ID for controller and HMI tags
3.2.2 Functions (FC)

3.2.3 Function blocks (FB)

3.4.3 Local memory

V1.2

03/2014

New chapter:

2.6.4 Conversion between optimized and non-optimized tags
2.6.5 Communication with optimized data

2.9.2 MOVE instructions

2.9.3 VARIANT instructions (only S7-1500)

3.6.4 Access to I/O areas with PLC data types

Extension of following chapter:
2.2 Terms

2.3 Programming languages
2.6 Optimized blocks

2.10 Symbolic and comments
3.2 Program blocks

3.5 Retentivity
4.3 Programming of "clock bits"

Several corrections in different chapter

V1.3

09/2014

New chapter:

2.8.4 Unicode data types

2.10.2 Comment lines in watch table
2.12 User constants

3.2.9 Auto numbering of blocks

5 STEP 7 Safety in the TIA Portal

Extension of following chapter:

2.7 Block properties

2.8 New data types for S7-1200/1500

2.9 Instructions

2.10 Symbolic and comments

3.6.3 STRUCT data type and PLC data types
3.7 Libraries

Several corrections in different chapter

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.3,

09/2014

101

	Programming Guideline for S7-1200/S7-1500
	Warranty and Liability
	Table of Contents
	1 Preface
	2 S7-1200/1500 Innovations
	2.1 Introduction
	2.2 Terms
	2.3 Programming languages
	2.4 Optimized machine code
	2.5 Block creation
	2.6 Optimized blocks
	2.6.1 S7-1200: Setup of optimized blocks
	2.6.2 S7-1500: Setup of optimized blocks
	2.6.3 Best possible data storage in the processor on S7-1500
	2.6.4 Conversion between optimized and non-optimized tags
	2.6.5 Communication with optimized data

	2.7 Block properties
	2.7.1 Block sizes
	2.7.2 Number of organization blocks (OB)

	2.8 New data types for S7-1200/1500
	2.8.1 Elementary data types
	2.8.2 Date_Time_Long data type
	2.8.3 Further time data types
	2.8.4 Unicode data types
	2.8.5 VARIANT data type (only S7-1500)

	2.9 Instructions
	2.9.1 CALCULATE
	2.9.2 MOVE instructions
	2.9.3 VARIANT instructions (only S71500)
	2.9.4 RUNTIME

	2.10 Symbolic and comments
	2.10.1 Programming editor
	2.10.2 Comment lines in watch table

	2.11 System constants
	2.12 User constants
	2.13 Internal reference ID for controller and HMI tags
	2.14 STOP mode in the event of errors

	3 General Programming
	3.1 Operating system and user program
	3.2 Program blocks
	3.2.1 Organization blocks (OB)
	3.2.2 Functions (FC)
	3.2.3 Function blocks (FB)
	3.2.4 Instances
	3.2.5 Multi-instances
	3.2.6 Global data blocks (DB)
	3.2.7 Downloading without reinitialization
	3.2.8 Reusability of blocks
	3.2.9 Auto numbering of blocks

	3.3 Block interface types
	3.3.1 Call-by-value with In interface type
	3.3.2 Call-by-reference with InOut interface type

	3.4 Storage concept
	3.4.1 Block interfaces as data exchange
	3.4.2 Global memory
	3.4.3 Local memory
	3.4.4 Access speed of memory areas

	3.5 Retentivity
	3.6 Symbolic addressing
	3.6.1 Symbolic instead of absolute addressing
	3.6.2 ARRAY data type and indirect field accesses
	3.6.3 STRUCT data type and PLC data types
	3.6.4 Access to I/O areas with PLC data types
	3.6.5 Slice access

	3.7 Libraries
	3.7.1 Types of libraries and library elements
	3.7.2 Type concept
	3.7.3 Differences for typifiable objects for CPU and HMI
	3.7.4 Versioning of a block

	3.8 Increasing performance with process interrupts
	3.9 Other performance recommendations
	3.10 SCL programming language: Tips and tricks
	3.10.1 Using call templates
	3.10.2 What instruction parameters are mandatory?
	3.10.3 Drag & drop with entire tag names
	3.10.4 Efficiently inserting CASE instruction
	3.10.5 No manipulation of loop counters for FOR loop
	3.10.6 FOR loop backwards
	3.10.7 Simple creating of instances for calls
	3.10.8 Handling of time tags

	4 Hardware-Independent Programming
	4.1 Data types of S7-300/400 and S7-1200/1500
	4.2 No bit memory but global data blocks
	4.3 Programming of "clock bits"

	5 STEP 7 Safety in the TIA Portal
	5.1 Introduction
	5.2 Terms
	5.3 Components of the safety program
	5.4 F-runtime group
	5.5 F signature
	5.6 Assigning the PROFIsafe address at the F-I/O
	5.7 Evaluation of F-I/O
	5.8 Value status (S7-1500F)
	5.9 Data types
	5.10 F-conform PLC data type
	5.11 TRUE/FALSE
	5.12 Data exchange between standard program and F program
	5.13 Testing the safety program
	5.14 STOP mode in the event of F errors
	5.15 Migration of tags
	5.16 General recommendations for safety

	6 The Most Important Recommendations
	7 Related Literature
	8 History

