SCE Training Curriculum | TIA Portal Module 032-200, Edition 05/2017 | Digital Factory, DF FA
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][image: PLC_141027_0108-1 (141217)_sRGB]






	








 (
SCE Training Curriculum
)


 (
Siemens Automation Cooperates with Education |
 
05/2017
)

[image: Unbenannt-1][image: Beschreibung: SIE_Logo_Layer_Petrol_RGB_A4_56mm]TIA Portal Module 032-200
Basics of FB Programming
with SIMATIC S7-1500

Matching SCE trainer packages for these training curriculums

SIMATIC Controllers
· SIMATIC ET 200SP Open Controller CPU 1515SP PC F and HMI RT SW
Order no.: 6ES7677-2FA41-4AB1
· SIMATIC ET 200SP Distributed Controller CPU 1512SP F-1 PN Safety
Order no.: 6ES7512-1SK00-4AB2
· SIMATIC CPU 1516F PN/DP Safety
Order no.: 6ES7516-3FN00-4AB2
· SIMATIC S7 CPU 1516-3 PN/DP
Order no.: 6ES7516-3AN00-4AB3
· SIMATIC CPU 1512C PN with Software and PM 1507          
Order no.: 6ES7512-1CK00-4AB1
· SIMATIC CPU 1512C PN with Software, PM 1507 and CP 1542-5 (PROFIBUS)
Order no.: 6ES7512-1CK00-4AB2
· SIMATIC CPU 1512C PN with Software
Order no.: 6ES7512-1CK00-4AB6
· SIMATIC CPU 1512C PN with Software and CP 1542-5 (PROFIBUS)
Order no.: 6ES7512-1CK00-4AB7

SIMATIC STEP 7 Software for Training
· SIMATIC STEP 7 Professional V14 SP1 - Single license
Order no.: 6ES7822-1AA04-4YA5
· SIMATIC STEP 7 Professional V14 SP1- Classroom license (up to 6 users)
Order no.: 6ES7822-1BA04-4YA5
· SIMATIC STEP 7 Professional V14 SP1 - Upgrade license (up to 6 users)
Order no.: 6ES7822-1AA04-4YE5
· SIMATIC STEP 7 Professional V14 SP1 - Student license (up to 20 users)
Order no.: 6ES7822-1AC04-4YA5

Note that these trainer packages are replaced with successor packages when necessary.
An overview of the currently available SCE packages is provided at: siemens.com/sce/tp


Continued training
For regional Siemens SCE continued training, get in touch with your regional SCE contact siemens.com/sce/contact


Additional information regarding SCE 
siemens.com/sce














Information regarding use
The SCE training curriculum for the integrated automation solution Totally Integrated Automation (TIA) was prepared for the program "Siemens Automation Cooperates with Education (SCE)" specifically for training purposes for public educational and R&D institutions. Siemens AG does not guarantee the contents.

This document is to be used only for initial training on Siemens products/systems. This means it can be copied in whole or part and given to those being trained for use within the scope of their training. Circulation or copying this training curriculum and sharing its content is permitted within public training and advanced training facilities for training purposes. 

Exceptions require written consent from the Siemens AG contact: Roland Scheuerer roland.scheuerer@siemens.com.

Offenders will be held liable. All rights including translation are reserved, particularly if a patent is granted or a utility model or design is registered.

Use for industrial customer courses is expressly prohibited. We do not consent to commercial use of the training curriculums. 

We wish to thank the TU Dresden, particularly Prof. Dr.-Ing. Leon Urbas, the Michael Dziallas Engineering Corporation and all other involved persons for their support during the preparation of this training curriculum.



Table of contents
1	Goal	5
2	Prerequisite	5
3	Required hardware and software	6
4	Theory	7
4.1	Operating system and application program	7
4.2	Organization blocks	8
4.3	Process image and cyclic program processing	9
4.4	Functions	11
4.5	Function blocks and instance data blocks	12
4.6	Global data blocks	13
4.7	Library-compatible code blocks	14
4.8	Programming languages	15
5	Task	16
6	Planning	16
6.1	EMERGENCY STOP	16
6.2	Automatic mode - Conveyor motor	16
7	Structured step-by-step instructions	17
7.1	Retrieve an existing project	17
7.2	Create a new tag table	18
7.3	Create new tags within a tag table	20
7.4	Import "Tag_table_sorting_station"	21
7.5	Create function block FB1 "MOTOR_AUTO" for the conveyor motor in automatic mode	25
7.6	Define the interface of FB1 "MOTOR_AUTO"	27
7.7	Program FB1: MOTOR_AUTO	30
7.8	Program organization block OB1 – Control of the forward belt tracking in automatic mode	38
7.9	The result in the LAD (Ladder Logic) programming language has the following appearance.	43
7.10	Save and compile the program	44
7.11	Download the program	45
7.12	Monitor program blocks	46
7.13	Archive the project	49
8	Checklist	50
9	Exercise	51
9.1	Task – Exercise	51
9.2	Planning	51
9.3	Checklist – Exercise	52
10	Additional information	53


Basics of FB Programming
[bookmark: _Toc486000414]Goal
In this chapter, you will get to know the basic elements of a control program – the organization blocks (OBs), functions (FCs), function blocks (FBs) and data blocks (DBs). In addition, you will be introduced to library-compatible function und function block programming. You will get to know the Function Block Diagram (FBD) programming language and use it to program a function block (FB1) and an organization block (OB1).
The SIMATIC S7 controllers listed in Chapter 3 can be used.
[bookmark: _Toc486000415]Prerequisite
This chapter builds on the hardware configuration of SIMATIC S7 CPU1516F-3 PN/DP. However, other hardware configurations that have digital input and output cards can be used. You can use the following project for this chapter, for example:
SCE_EN_012_101__Hardware_Configuration_CPU1516F.zap13


[bookmark: _Toc476507553][bookmark: _Toc476507354][bookmark: _Toc476506833][bookmark: _Toc462187877][bookmark: _Toc486000416]Required hardware and software
1	Engineering station: requirements include hardware and operating system 
(for additional information, see Readme on the TIA Portal Installation DVDs)
2	SIMATIC STEP 7 Professional software in TIA Portal – as of V13
3	SIMATIC S7-1500/S7-1200/S7-300 controller, e.g. CPU 1516F-3 PN/DP – 
Firmware as of V1.6 with memory card and 16DI/16DO and 2AI/1AO
Note: The digital inputs should be fed out to a control panel.
4	Ethernet connection between engineering station and controller 
 (
2
 SIMATIC STEP 7 Professional (TIA Portal) as of V13
)[image: 004] (
1 
Engineering station
)[image: G_SY02_XX_00070I]






 (
4
 Ethernet connection
)

 (
Control panel
)[image: ] (
3
 SIMATIC 
S7
-1500
 controller
)[image: S7-1500_MC]










[bookmark: _Toc486000417]Theory
[bookmark: _Toc486000418]Operating system and application program 
Every controller (CPU) contains an operating system, which organizes all functions and processes of the CPU that are not associated with a specific control task. The tasks of the operating system include the following:
· Performing a warm restart
· Updating the process image of the inputs and outputs
· Cyclically calling the user program
· Detecting interrupts and calling interrupt OBs
· Detecting and handling errors
· Managing memory areas
The operating system is an integral component of the CPU and comes pre-installed.
The user program contains all functions that are necessary for executing your specific automation task. The tasks of the user program include the following:
· Checking the basic requirements for a warm restart using startup OBs
· Processing of process data, i.e. activation of output signals as a function of the input signal states
· Reaction to interrupts and interrupt inputs
· Error handling during normal program execution
[bookmark: _Toc486000419]
Organization blocks
Organization blocks (OBs) form the interface between the operating system of the controller (CPU) and the application program. They are called from the operating system and control the following operations:
· Cyclic program processing (e.g. OB1)
· Startup characteristics of the controller
· Interrupt-driven program processing
· Error handling
A project must have an organization block for cyclic program processing at a minimum. An OB is called by a start event as shown in Figure 1. In addition, the individual OBs have defined priorities so that, for example, an OB82 for error handling can interrupt the cyclic OB1.



[bookmark: _Ref380071861]Figure 1: Start events in the operating system and OB calls


When a start event occurs, the following reactions are possible:
· If an OB has been assigned to the event, this event triggers the execution of the assigned OB. If the priority of the assigned OB is greater than the priority of the OB that is currently being executed, it is executed immediately (interrupt). If not, the assigned OB waits until the higher-priority OB has been completely executed.
· If an OB is not assigned to the event, the default system reaction is performed.

Table 1 gives a couple of examples of start events for a SIMATIC S7-1500, their possible OB number(s) and the default system reaction in the event the organization block is not present in the controller. 
	Start event
	Possible OB numbers
	Default system reaction

	Startup
	100,  123
	Ignore

	Cyclic program
	1,  123
	Ignore

	Time-of-day interrupt
	10 to 17,  123
	-

	Update interrupt
	56
	Ignore

	Scan cycle monitoring time exceeded once
	80
	STOP

	Diagnostic interrupt
	82
	Ignore

	Programming error 
	121
	STOP

	IO access error
	122
	Ignore


[bookmark: _Ref381356432]Table 1: OB numbers for various start events

[bookmark: _Toc486000420]Process image and cyclic program processing
When the cyclic user program addresses the inputs (I) and outputs (O), it does not query the signal states directly from the input/output modules. Instead, it accesses a memory area of the CPU. This memory area contains an image of the signal states and is called the process image. 


The cyclic program processing sequence is as follows:
1. At the start of the cyclic program, a query is sent to determine whether or not the individual inputs are energized. This status of the inputs is stored in the process image of the inputs (PII). In doing so, the information 1 or "High" is stored for energized inputs and the information 0 or "Low" for de-energized inputs. 
2. The CPU now executes the program stored in the cyclic organization block. For the required input information, the CPU accesses the previously read process image of the inputs (PII) and the results of logic operation (RLOs) are written to a so-called process image of the outputs (PIQ). 
3. At the end of the cycle, the process image of the outputs (PIQ)  is transferred as the signal state to the output modules and these are energized or de-energized. The sequence then continues again with Item 1. 
 (
1
. Save status of inputs in PII.
)



 (
PII
) (
PLC program in the program memory 
1st instruction
2nd instruction
3rd instruction
4th instruction
...
Last instruction
)
 (
2.
 Processing the program instruction-by-instruction with access to PII and PIQ 
) (
Local data
)

 (
Bit memory
)
 (
Data blocks
)

 (
PIQ
)




 (
3. 
Transfer status from the PIQ to the outputs.
)

Figure 2: Cyclic program processing

Note: The time the CPU needs for this sequence is called cycle time. This depends, in turn, on the number and type of instructions and the processor performance of the controller.
[bookmark: _Toc486000421]
Functions
Functions (FCs) are logic blocks without memory. They have no data memory in which values of block parameters can be stored. Therefore, all interface parameters must be connected when a function is called. To store data permanently, global data blocks must be created beforehand.
A function contains a program that is executed whenever the function is called from another code block. 
Functions can be used, for example, for the following purposes:
· Math functions – that return a result dependent on input values.
· Technological functions – such as individual controls with binary logic operations.
A function can also be called several times at different points within a program.



 (
Organization block 
Main [OB1]
Calls the MOTOR_MANUAL [FC1] function
)

 (
MOTOR_MANUAL [FC1]
Contains a program for controlling a conveyor in manual mode, for example.
 
The function has no memory.
)













Figure 3: Function with call from organization block Main [OB1]


[bookmark: _Toc486000422]
Function blocks and instance data blocks
[bookmark: _Ref378858821]Function blocks are code blocks that store their input, output and in-out tags as well as static tags permanently in instance data blocks, so that they are available after the block has been executed. For this reason, they are also referred to as blocks with "memory".
Function blocks can also operate with temporary tags. Temporary tags are not stored in the instance DB, however. Instead, they are only available for one cycle.
Function blocks are used for tasks that cannot be implemented with functions:
· Whenever timers and counters are required in the blocks.
· Whenever information must be saved in the program, such as pre-selection of the operating mode with a button.
Function blocks are always executed when called from another code block. A function block can also be called several times at different points within a program. This facilitates the programming of frequently recurring complex functions.
A call of a function block is referred to as an instance. Each instance of a function block is assigned a memory area that contains the data that the function block uses. This memory is made available by data blocks created automatically by the software. 
It is also possible to provide memory for multiple instances in one data block in the form of a multi-instance. The maximum size of instance data blocks varies depending on the CPU. The tags declared in the function block determine the structure of the instance data block.


 (
Instance data block MOTOR_AUTO_DB1 [DB1] as memory 
for
 the call of function block MOTOR_AUTO [FB1]
)
 (
Organization block 
Main [OB1]
Calls function block MOTOR_AUTO [FB1] together with its instance data block MOTOR_AUTO_DB1 [DB1]
)
 (
Function block MOTOR_AUTO [FB1]
Contains a program for controlling a conveyor in automatic mode, for example
The function block uses instance data block MOTOR_AUTO_DB1 [DB1] as memory in this call.
)













Figure 4: Function block and instance with call from organization block Main [OB1]
[bookmark: _Toc486000423]
Global data blocks
In contrast to logic blocks, data blocks contain no instructions. Rather, they serve as memory for user data.
Data blocks thus contain variable data that is used by the user program. You can define the structure of global data blocks as required. 
Global data blocks store data that can be used by all other blocks (see Figure 5). Only the associated function block should access instance data blocks. The maximum size of data blocks varies depending on the CPU. 
[bookmark: _Ref381356466] (
Access for all blocks
) (
Instance 
DB
(
DB_Instance
)
) (
Global 
DB
(DB_Global)
) (
Function_
block_12
) (
Function_11
) (
Function_10
) (
Access only for function data block_12
)[image: Datenbausteine]
Figure 5: Difference between global DB and instance DB.

Application examples for global data blocks are:
· Saving of information about a storage system. "Which product is located where?"
· Saving of recipes for particular products.

[bookmark: _Toc486000424]
Library-compatible code blocks
A user program can be created with linear or structured programming. Linear programming writes the entire user program in the cycle OB, but is only suitable for very simple programs for which other less expensive control systems, such as LOGO!, can now be used.
Structured programming is always recommended for more complex programs. Here, the overall automation task can be broken down into small sub-tasks in order to implement a solution for them in functions and function blocks.
In this case, library-compatible logic blocks should be created preferentially. This means that the input and output parameters of a function or function block are defined generally and only supplied with the current global tags (inputs/outputs) when the block is used. 
[image: first_fb]
[image: first_ob1call]
[bookmark: _Ref380074713]Figure 6: Library-compatible function with call in OB1
[bookmark: _Toc486000425]
Programming languages
The available programming languages for programming functions are Function Block Diagram (FBD), Ladder Logic (LAD), Statement List (STL) and Structured Control Language (SCL). For function blocks, the GRAPH programming language is additionally available for programming graphical step sequences.
The Function Block Diagram (FBD) programming language will be presented in the following.
FBD is a graphical programming language. The representation is based on electronic switching systems. The program is mapped in networks. A network contains one or more logic operation paths. Binary and analog signals are linked by boxes. The graphical logic symbols known from Boolean algebra are used to represent the binary logic.
You can use binary functions to query binary operands and to logically combine their signal states. The following instructions are examples of binary functions: "AND operation", "OR operation" and "EXCLUSIVE OR operation". These are shown in Figure 7.
[image: 001_network_logic]	[image: 010-210 Logik 1 - Tabelle 2]
[bookmark: _Ref380081148]Figure 7: Binary functions in FBD and associated logic table
You can thus use simple instructions, for example, to control binary outputs, evaluate edges and execute jump functions in the program.
Program elements such as IEC timers and IEC counters provide complex instructions.
The empty box serves as a placeholder in which you can select the required instruction.
Enable input EN (enable)/ Enable output ENO (enable output) mechanism:
· An instruction without EN/ENO mechanism is executed independent of the signal state at the box inputs.
· Instructions with EN/ENO mechanism are only executed if enable input "EN input has signal state "1". When the box is processed correctly, enable output "ENO" has signal state "1". As soon as an error occurs during the processing, the "ENO" enable output is reset. If enable input EN is not connected, the box is always executed.
[bookmark: _Toc486000426]
Task
The following functions of the sorting station process description will be planned, programmed and tested in this chapter:
· Automatic mode - Conveyor motor
[bookmark: _Toc486000427]Planning
The programming of all functions in OB1 is not recommended for reasons of clarity and reusability. The majority of the program code will therefore be moved into functions (FCs) and function blocks (FBs). The decision on which functions is to be moved to the FB and which is to run in OB 1 is planned below.
[bookmark: _Toc486000428]EMERGENCY STOP
The EMERGENCY STOP does not require a separate function. Just like the operating mode, the current state of the EMERGENCY STOP relay can be used directly at the blocks.
[bookmark: _Toc486000429]Automatic mode - Conveyor motor
Automatic mode of the conveyor motor is to be encapsulated in a function block (FB) "MOTOR_AUTO". On the one hand, this preserves the clarity of OB1. On the other hand, it enables reuse if another conveyor belt is added to the station. Table 2 lists the planned parameters.
	Input
	Data type
	Comment

	Automatic_mode_active
	BOOL
	Automatic mode activated

	Start
	BOOL
	Pushbutton automatic start

	Stop
	BOOL
	Pushbutton automatic stop

	Enable_OK
	BOOL
	All enable conditions OK

	Safety_shutoff_active
	BOOL
	Safety shutoff active, e.g. emergency stop pressed

	Output
	
	

	Conveyor_motor_automatic_mode
	BOOL
	Control of the conveyor motor in automatic mode

	[bookmark: _Ref381356509]Static
	
	

	Memory_automatic_start_stop
	BOOL
	Memory used for start/stop automatic mode


Table 2: Parameters for FB "MOTOR_AUTO"
The Memory_automatic_start_stop is latched with Start but only if the reset conditions are not present. 
The Memory_automatic_start_stop is reset if Stop is present or safety shutoff is active or automatic mode is not activated (manual mode).
The Conveyor_motor_automatic_mode output is controlled when Memory_automatic_start_stop is set and the enable conditions are met.
[bookmark: _Toc486000430]
Structured step-by-step instructions
You can find instructions on how to carry out planning below. If you already have a good understanding of everything, it will be sufficient to focus on the numbered steps. Otherwise, simply follow the detailed steps in the instructions.
[bookmark: _Toc486000431]Retrieve an existing project
Before we can start programming the function block (FB) "MOTOR_AUTO", we need a project with a hardware configuration (e.g. SCE_EN_012_101_Hardware_Configuration_S7-1516F_R1502.zap). To retrieve an existing project that has been archived, you must select the relevant archive with  Project  Retrieve in the project view. Confirm your selection with Open. ( Project  Retrieve  Select a .zap archive  Open)
[image: 01_retrieve]


The next step is to select the target directory where the retrieved project will be stored. Confirm your selection with "OK". ( Target directory  OK)





[bookmark: _Toc486000432]Create a new tag table
In the project view, navigate to the  PLC tags of your controller and create a new tag table by double-clicking  Add new tag table. 
[image: 02_neutagtable]


Rename the tag table you just created as "Tag_table_sorting_station" ( right-click "Tag_table_1"  "Rename"  Tag_table_sorting_station).
[image: 03_rename]
Open this tag table with a double-click. ( Tag_table_sorting_station)
[image: 04_rename_open]
[bookmark: _Toc486000433]
Create new tags within a tag table
Add the name Q1 and confirm the entry with the Enter key. If you have not yet created additional tags, TIA Portal now automatically assigns data type "Bool" and address %I0.0 (I 0.0) ( <Add>  Q1  Enter).
[image: 02_QQ]
Change the address to %Q0.0 (Q 0.0) by entering this directly or by clicking the drop-down arrow to open the Addressing menu, changing the operand identifier to Q and confirming with Enter or by clicking the check mark. ( %I0.0  Operand identifier  Q  [image: Z:\Projekte\Siemens-SCE-Wissensplattform_2\projekt\FC-Programmierung\Screenshhots\Screenshhots\2014-07-14 13_35_56-MyDropDownDialogForm.jpg])
[image: 02_QQ]
Enter the "Conveyor motor M1 forwards fixed speed" comment for the tag.
[image: 02_QQ]


Add a new Q2 tag in line 2. TIA Portal has automatically assigned the same data type as in line 1 and has incremented the address by 1 to %Q0.1 (Q0.1). Enter the comment "Conveyor motor M1 backwards fixed speed". 
( <Add>  Q2  Enter  Comment  Conveyor motor M1 backwards fixed speed)
[image: 01_QQ]
[bookmark: _Toc486000434]Import "Tag_table_sorting_station"
To insert an existing symbol table, right-click on an empty field of the created "Tag_table_sorting_station". Select "Import file" in the shortcut menu.
( Right-click in an empty field of the tag table  Import file)
[image: 01_QQ]


Select the desired symbol table (e.g. in .xlsx format) and confirm the selection with "Open".
( SCE_EN_020-100_Tag_table_sorting_station…  Open)

When the import is finished, you will see a confirmation window and have an opportunity to view the log file for the import. Click  OK.
[image: 11_import_message]


You can see that some addresses have been highlighted in orange. These are duplicate addresses and the names of the associated tags have been numbered automatically to avoid confusion.
Delete the duplicate tags by selecting the lines and pressing the Del key on your keyboard or by selecting "Delete" in the shortcut menu.
( Right-click on selected tags  Delete)
[image: 02_QQ]


You now have a complete symbol table of the digital inputs and outputs in front of you. Save your project under the name 032-100_FCProgramming.
( Project  Save as ... 032-200_FBProgramming  Save)
[image: 12_saveas]



[bookmark: _Toc486000435]
Create function block FB1 "MOTOR_AUTO" for the conveyor motor in automatic mode
In the PLC programming section of the portal view, click "Add new block" to create a new function block.
( PLC programming  Add new block  [image: ]) 
[image: 01_new_block]


Rename your new block to: "MOTOR_AUTO", set the language to FBD and keep automatic assignment of the number. Select the "Add new and open" check box. You are then taken automatically to your created function block in the project view.Click "Add".
( Name: MOTOR_AUTOLanguage: FBD  Number: Automatic  [image: ] Add new and open  Add)
[image: ]

[bookmark: _Toc486000436]
Define the interface of FB1 "MOTOR_AUTO"
If you selected "Add new and open", the project view opens with a window for creating the block you just added.
You can find the interface description of your function block in the upper section of your programming view.
[image: 02_new]


A binary output signal is needed for controlling the conveyor motor. For this reason, we first create local output tag #Conveyor_motor_automatic_mode of the "Bool" type. Enter the comment "Control of the conveyor motor in automatic mode" for the parameter.
( Output: Conveyor_motor_automatic_mode  Bool  Control of the conveyor motor in automatic mode)
[image: 03_interface]
Add parameter #Automatic_mode_active as the input interface under Input and confirm the entry with the Enter key or by exiting the entry field. Data type "Bool" is assigned automatically. This will be retained. Next, enter the associated comment "Automatic mode activated". 
( Automatic_mode_active  Bool  Automatic mode activated) 
Add parameters #Start, #Stop, #Enable_OK and #Safety_shutoff_active as additional binary input parameters under Input and check their data types. Add descriptive comments. 
[image: 04_interface]

The conveyor is started and stopped with pushbuttons. We therefore need a "Static" tag as a memory. Under Static, add tag #Memory_automatic_start_stop and confirm the entry with the Enter key or by exiting the entry field. Data type "Bool" is assigned automatically. This will be retained. Enter the associated comment "Memory used for start/stop automatic mode". ( Memory_automatic_start_stop  Bool  Memory used for start/stop automatic mode) 
[image: 05_interface]
For purposes of program documentation, assign the block title, a block comment and a helpful network title for Network 1.
( Block title: Motor control in automatic mode  Network 1: Memory_automatic_start_stop and control of the conveyor motor in automatic mode)
[image: 06_titel_comment]
[bookmark: _Toc486000437]
Program FB1: MOTOR_AUTO
Below the interface description, you see a toolbar in the programming window with various logic functions and below that an area with networks. We have already specified the block title and the title for the first network there. Programming is performed within the networks using individual logic blocks. Distribution among multiple networks helps to preserve the clarity of the program. In the following, you will get to know the various ways you can insert logic blocks.
[image: ]
You can see a list of instructions you can use in the program on the right side of your programming window. Under  Basic instructions  Bit logic operations, find function [image: ] (Assignment) and use a drag-and-drop operation to move it to Network 1 (green line appears, mouse pointer with + symbol).
( Instructions  Basic instructions  Bit logic operations  [image: ])
[image: ]


Now use drag-and-drop to move your output parameter #Conveyor_motor_automatic_mode onto <??.?> above the block you just inserted. The best way to select a parameter in the interface description is by "grabbing" it at the blue symbol [image: ].
( [image: ] Conveyor_motor_automatic_mode)
[image: ]

This determines that the #Conveyor_motor_automatic_mode parameter is written by this block. Still missing, however, are the input conditions so that this actually happens. An SR flip-flop and #Enable_OK parameter are logically combined with an AND logic operation at the input of the assignment block. To do this, first click the input of the block so that the input line has a blue background.
[image: 09_new_assignment]


Click the [image: ] icon in your logic toolbar to insert an AND logic operation before your assignment block.
[image: 10_and]

Use drag-and-drop to move input parameter #Enable_OK onto the second input of the & logic operation <??.?>. ( [image: ] Enable_OK)
[image: 10_and_plustag]


Use drag-and-drop to move the Set/reset flip-flop function [image: ] from the list of instructions under  Basic instructions  Bit logic operations onto the first input of the & operation [image: ].
( Instructions  Basic instructions  Bit logic operations  [image: ]  [image: ] )
[image: 11_sr]
The SR flip-flop requires a memory tag. For this, use drag-and-drop to move static parameter #Memory_automatic_start_stop onto the <??.?> above the SR flip-flop. ( [image: ] Memory_automatic_start_stop)
[image: 11_sr]

The #Memory_automatic_start_stop will be set with input tag #Start. Click twice on the S input of the SR flip-flop <??.?> and enter "Start" in the field that appears in order to see a list of available tags starting with "Start".Click the #Start tag and apply with  Enter.
( SR flip-flop  <??.?>  Start  #Start  Enter)
[image: 13_sr]
Note: When assigning tags in this way, there is a risk of a mix-up with the global tags from the tag table. The previously presented procedure using drag and drop from the interface description should therefore be used preferentially.

Multiple conditions are to be able to stop the conveyor. An OR block is therefore needed at the R1 input of the SR flip-flop. First, click the R1 input of the SR flip-flop so that the input line has a blue background.
[image: 14_sr]

Click the [image: ] icon in your logic toolbar to insert an OR logic operation.
[image: 15_or]
The OR block has 2 inputs initially. In order to logically combine an additional input tag, click the yellow star [image: ] of the OR block.
[image: 16_or]
Add input tags #Stop, #Safety_shutoff_active and #Automatic_mode_active to the 3 inputs of the OR block.
[image: 17_or]

Negate the input connected to parameter #Automatic_mode_active by selecting it and clicking [image: ]. 
[image: 18_not]

Do not forget to click [image: 27_save]. The finished function block "MOTOR_AUTO" [FB1] in FBD is shown below.
[image: 19_save]


Under "General" in the properties of the block, you can change the "Language" to LAD (Ladder Logic) (Properties  General  Language: LAD)
[image: 20_change_language]
The program has the following appearance in LAD.
[image: 21_kop]
[bookmark: _Ref401572038]
[bookmark: _Toc486000438]
Program organization block OB1 – Control of the forward belt tracking in automatic mode
Before programming organization block "Main [OB1]", we switch the programming language to FBD (Function Block Diagram). To do so, first click on "Main [OB1]" in the "Program blocks" folder. 
( CPU_1516F[CPU 1516F-3 PN/DP  Program blocks  Main [OB1]  Switch programming language  FBD)
[image: 22_ob1]
Open the "Main [OB1]" organization block with a double-click.
[image: 23_ob1]

Assign Network 1 the name "Control conveyor tracking forward in automatic mode" 
( Network 1:... Control conveyor motor forwards in automatic mode)
[image: 24]
Use drag-and-drop to move your "MOTOR_AUTO [FB1]" function block onto the green line in Network 1.
[image: 25_call]


The instance data block for this call of FB1 is created automatically. Assign a name and apply it with OK. ( MOTOR_AUTO_DB1  OK)
[image: 26]
A block with the interface you defined, the instance data block and connections EN and ENO are inserted in Network 1.
[image: 27]
To insert an AND before input parameter "Enable_OK", select this input and insert the AND by clicking the [image: ] icon in your logic toolbar ([image: ]).
[image: 28_ob1_and]

To connect the block to the global tags from "Tag_table_sorting_station", we have two options:
Either select the "Tag_table_sorting_station" in the project tree and use drag-and-drop to move the desired global tag from the Details view to the interface of FC1 (  Tag_table_sorting_station  Details view.  S0  Automatic_mode_active)
[image: ]
Or, enter the starting letters (e.g. "S") “-S”of the desired global tag for <??.?> and select the global input tag "-S0" (%I0.2) from the displayed list. ( Automatic_mode_active  S  -S0)
[image: 29]

Insert the other input tags "-S1", "-S2", "-K0", "-B1" and "-A1" and insert output tag "-Q1" (%Q0.0) at output "Conveyor_motor_automatic_mode".
[image: 30]
Negate the querying of input tags "-S2" and "-A1" by selecting them and clicking [image: ]. 
( -S2  [image: ]  -A1  [image: ])
[image: 31]
[bookmark: _Toc486000439]
The result in the LAD (Ladder Logic) programming language has the following appearance.

[image: 32]

[bookmark: _Toc486000440]
 Save and compile the program
To save your project, select the [image: 27_save] button in the menu. To compile all blocks, click the "Program blocks" folder and select the [image: D:\00_DATA\SIEMENS\Unterlagen\08_Ausbildungsunterlage_TIA-Portal_R1502_dt\032-100 FC-Programmierung\pics\052.jpg] icon for compiling in the menu 
( [image: 27_save]  Program blocks  [image: D:\00_DATA\SIEMENS\Unterlagen\08_Ausbildungsunterlage_TIA-Portal_R1502_dt\032-100 FC-Programmierung\pics\052.jpg]).
[image: 33_compile]
The "Info", "Compile" area shows which blocks were successfully compiled.
[image: 34_compiile]

[bookmark: _Toc486000441]
 Download the program
After successful compilation, the complete controller with the created program, as previously described in the modules for hardware configuration, can be downloaded 
( [image: ]).
[image: 35_download]

[bookmark: _Toc486000442]
 Monitor program blocks
The desired block must be open for monitoring the downloaded program. The monitoring can be activated/deactivated by clicking the  [image: D:\00_DATA\SIEMENS\Unterlagen\08_Ausbildungsunterlage_TIA-Portal_R1502_dt\032-100 FC-Programmierung\pics\055b.jpg] icon. ( Main [OB1]  [image: D:\00_DATA\SIEMENS\Unterlagen\08_Ausbildungsunterlage_TIA-Portal_R1502_dt\032-100 FC-Programmierung\pics\055b.jpg])
[image: 36_monitor]
[image: 37]
Note: The monitoring here is signal-related and controller-dependent. The signal states at the terminals are indicated with TRUE or FALSE.


The "MOTOR_AUTO" [FB1] function block called in the "Main [OB1]" organization block can be selected directly for "Open and monitor" after right-clicking ( "MOTOR_AUTO" [FB1]  Open and monitor).
[image: 38]
[image: 39]
Note: The monitoring here is function-related and controller-independent. The actuation of sensors and the station status are shown here with TRUE or FALSE.


If a particular point of use of a "MOTOR_AUTO" [FB1] function block that is called multiple times is to be monitored, this can be performed using the [image: D:\00_DATA\SIEMENS\Unterlagen\08_Ausbildungsunterlage_TIA-Portal_R1502_dt\032-100 FC-Programmierung\pics\058b.jpg] icon. There are two alternatives available for specifying the call environment: using the call environment or the instance data block. ( [image: D:\00_DATA\SIEMENS\Unterlagen\08_Ausbildungsunterlage_TIA-Portal_R1502_dt\032-100 FC-Programmierung\pics\058b.jpg]  Instance data block  MOTOR_AUTO_DB1 [DB1]  Call environment  Address: OB1  Details: Main NW1  OK).
[image: 41]
[image: 40]

[bookmark: _Toc412051847][bookmark: _Toc486000443]
Archive the project
As the final step, we want to archive the complete project. Select the  "Archive ..." command in the  "Project" menu. Select a folder where you want to archive your project and save it with the file type "TIA Portal project archive". ( Project  Archive  TIA Portal project archive  032-200_FBProgramming….  Save)
[image: ]

[bookmark: _Toc486000444]
Checklist  
	No.
	Description
	Completed

	1
	Compiling successful and without error message
	

	2
	Download successful and without error message
	

	3
	Switch on station (-K0 = 1)
Cylinder retracted / Feedback activated (-B1 = 1)
EMERGENCY OFF (-A1 = 1) not activated
AUTOMATIC mode (-S0 = 1)
Pushbutton automatic stop not actuated (-S2 = 1)
Briefly press the automatic start pushbutton (-S1 = 1)
then conveyor motor forwards fixed speed (-Q1 = 1)
switches on and stays on.
	

	4
	Briefly press the automatic stop pushbutton (-S2 = 0)  Q1 = 0
	

	5
	Activate EMERGENCY OFF (-A1 = 0)  Q1 = 0
	

	6
	Manual mode (-S0 = 0)  Q1 = 0
	

	7
	Switch off station (-K0 = 0)  Q1 = 0
	

	8
	Cylinder not retracted (-B1 = 0)  Q1 = 0
	

	9
	Project successfully archived
	




[bookmark: _Toc486000445]
Exercise
[bookmark: _Toc486000446]Task – Exercise 
In this exercise, an energy saving function is to be added to the MOTOR_AUTO [FB1] function block. The expanded function block will be planned, programmed and tested:
To save energy, the conveyor should only run when a part is present.
The Conveyor_motor_automatic_mode output is therefore only activated when Memory_automatic_start_stop is set, the enable conditions are met and Memory_conveyor_start_stop is set.
The Memory_conveyor_start_stop is set when Sensor_chute_occupied signals a part and is reset when Sensor_end_of_conveyor produces a negative edge or safety shutoff is active or automatic mode is not activated (manual mode).

[bookmark: _Toc486000447]Planning
Plan the implementation of the task on your own.
Note: Learn about the use of the negative edge in SIMATIC S7-1500 in the online help.
[bookmark: _Toc486000448]
Checklist – Exercise

	No.
	Description
	Completed

	1
	Compiling successful and without error message
	

	2
	Download successful and without error message
	

	3
	Switch on station (-K0 = 1)
Cylinder retracted / Feedback activated (-B1 = 1)
EMERGENCY OFF (-A1 = 1) not activated
AUTOMATIC mode (-S0 = 1)
Pushbutton automatic stop not actuated (-S2 = 1)
Briefly press the automatic start pushbutton (-S1 = 1)
Sensor at chute activated (-B4 = 1)
then conveyor motor forwards fixed speed (-Q1 = 1) switches on and stays on.
	

	4
	Sensor at end of conveyor activated (-B7 = 1)  -Q1 = 0
	

	5
	Briefly press the automatic stop pushbutton (-S2 = 0)  -Q1 = 0
	

	6
	Activate EMERGENCY OFF (-A1 = 0)  -Q1 = 0
	

	7
	Manual mode (-S0 = 0)  -Q1 = 0
	

	8
	Switch off station (-K0 = 0)  -Q1 = 0
	

	9
	Cylinder not retracted (-B1 = 0)  -Q1 = 0
	

	10
	Project successfully archived
	



[bookmark: _Toc486000449]
 Additional information

You can find additional information as an orientation aid for initial and advanced training, for example: Getting Started, videos, tutorials, apps, manuals, programming guidelines and trial software/firmware, at the following link:	 

www.siemens.com/sce/s7-1500

For unrestricted use in educational and R&D institutions. © Siemens AG 2017. All rights reserved.	
For unrestricted use in educational and R&D institutions. © Siemens AG 2017. All rights reserved.	9		
SCE_EN_032-200 FB-Programming_S7-1500_R1703.docx
image3.wmf

image4.jpeg




image5.jpeg




image6.emf
 


image7.jpeg




image8.emf
Operating system

Startup routine

OB 100 Warm 

restart ...

ON (Run)

Cycle

Cyclic program 

processing

OB 1

Interrupt-driven 

program processing

OB 10 ... 17

OB 56

...

Error handling

OB 80

OB 82

OB 121

OB 122

...

Interrupt

Error

Interruption

Interruption


oleObject1.bin
Operating system�

Startup routine

OB 100 Warm restart ...�


image9.png
—
Funktion 10 |1
Globaler DB
(DB_Global)
] —
Funktion_11 [ |
Funktions- / Instanz-DB
baustein_12 [ ™| (DB_Instanz)
l—

Zugriff fur alle Bausteine

Zugriff nur fiir
Funktionsdatenbaustein_12




image10.jpeg
0_FB-Programming » CPU_1516F [CPU 1516F-3 PNIDP] » Program blocks » MOTOR_AUTO [FB1]

e EaY

W E B E

MOTOR_AUTO
Name oats ype Defsultuslue Retsin Accesiblef.. Visblzin .. Sepoint

i@ e

S @ uomatcmode act. ool toneer. [ [0 a
Bla=  son 200l Nonetain 0 a
BEas sop 800l Nonsetain = =]
S @s Ensbleok 800l Nonetain 5] 8
6 @s  Sseyshuofacie  Sool Nonetain 8 B
o @~ ouput

& @@=  Comeormotorsut. Bool Nonetain @2 2

Comment.

Automatic mode activated
Pushbutton automatic start

Pushbutton automatic stop

All enable conditions OK

Safety shutoffactive e.g. emergencysto.

Control of the conveyor motorin autom.

 Block title: - Motor control in automatic mode:
» Conveyor motor in automatic mode:

~  Network 1:

Memory automatic_start_stop and control of the conveyor motor in automatic mode.

- #Memony_
e automatic_
#safety_shutoff_ strtstop B
active — - #Conveyor_
#Automatic_ #str—s -
mode_active -0 = a

2Enable_OK— 3 ] —





image11.jpeg
CPU_1516F [CPU 1516F-3 PNIDP] » Program blocks

W E 2 s =B EE|8: a2

ERY

ol ]

¥ Network 1: Control conveyor motor forwards in automatic mode

=
o
il
“MOTOR_AUTO"
I
i
50" —{mode_active
. b
w1 51" —istan
KO w4
s 5 sep G
81T —p ————————————Enable_oK. sutomatic_| %Q0.0
%00 safery e

*41" —g|shutoff active

ENo|





image12.jpeg
Network 1:

Network 2:

Network 3:

AND-Operation
&

n—

#2— —

OROperation

s
n—

m—s -

EXCLUSIVE OROperation

s—
#2—

#Q1

22

#03




image13.png
#el_rea| #al

0

o
- ooo

0
1
1

#el_se2] #a2

ke o
ko
ey

el e[

0o oo
0o 1)1
101
1 1]o





image14.jpeg
Edit View Inset Online Options T

5 New. &
[ open o
Wigrate project.

olee prjce.
T Card ReaderlUs8 memory »
T Memory card file »

DiAutomationlo13_10..1013_101_CPU314C
DilAutomationl012_10..1012_101_CPU1S16F
DiVorlagenprojekt_Webserv. iTank V13_sP1
D1.1032:200_F8-Programmierung_S7-314.

DiAutomatisi..J012-100_CPU1500_V13_SP1

Bit





image15.jpeg
Project Edit View Inset Online Options Tools Window Help

H X 9:e: BHEEER F coonline

Project tree

Devices

50 O

~ 1 012,101 crutster
B Add new device
b Devices & netorks
~ [ CPU_1516F [CPU 151673 PNIDF]
Y Device configuration
‘4] Online & isgnostics
2 Program blocks
[ Technology objects
Excemal source fles
L FLCtags
% showalltsgs
B Add e ag eble
% Standsravarisblentabelle (34]
PLC dsts tpes
24 Watch and force tables
(i Online backups
% Taces
5 Frogram info
i Device proy dats
2 PLCalarms

Gholols





image16.jpeg
Project Edit View Inset Online Options Tools Window Help

5 (% [ saveproject X0te: 3 MG Goonline ¥ <

Project tree

|| Devices
LX)

~ 1 012101 crutster
B Add new device
sh Devices & networks
~ [l CPU_1516F [CPU 1516F-3 PN/DP]
Y Device coniguration
4] Online & diagnostics
» I Program blocks
» G Technology objects
» f Excerl source fles
~ [ rctsgs
% showslltags
1 Add newtag tsble
% Standsraarisblentabelle 541
1 Tag table_ sorting station [0]
PLC dsta tpes
» Ll Wstch snd force tables
» [& Online backups
» [ Traces
B Programint





image17.jpeg
Project

UF 3 seveprojeet & X

Edit View Inzert Onine Options

Tools

X 9

Help
MG ER S coonine J

Devices

QO

) 012_101_crutsen
W Add new device
dhh Devices & networks
~ ([ CPU_1516F [CPU 1516F-3 PN/DP]
W eveontytmon
% onine & diagnostics
» (& Pogramblocks
» G Technclogyobjects
» G Exemal source fes
~ (& rctgs
% showalltags
B Add new tag able
54 standardvarisblentsbelle [54]
55 Tag tabi_soring siaton (0]
» [ ric data ypes
» G2 Vitch and force tables
» [ig Online backups
» [ Toces
5} progrmin
{5, Device proydita
FLC larms
Texlist
» [ Local modules
+ g Commondsta

Totally Integrated Automation
PORTAL

B TR
Tag table_sorting station

Sne L

< [beatie view

Detatype | Comment

4 Portal view

Comment:

| Neme Dataspe Address Retin | Visbl...|Acces...|Comment
l z ® @
" Properties | 4Info | % Diagnostics
[ General |
e Tag
General
I
| Neme:
il
i Dsta tpe:
Adress:
‘ Gt

% 129 table_so.





image18.jpeg
® D TR 3

Tag table_sorting station
Neme Datatype |Address  Retsin | Visibl... |Acces... Comment
a1 ool w00 [5] M &

(2]





image19.jpeg
Operandenkennzeichen:

Operandentyp:
Adresse:

Bitnummer:

[

I

[[x]





image20.jpeg
..rogramming » CPU_1516F [CPU 1516F-3 PN/DP] » PLCtags » Tag table_sorting station [1]
@ Tags [@ User constants_||

g 2 BT 2
Tag table_sorting station
Neme Datatype |Address |Retsin | Visibl.. |Acces... Comment
ia o Bool (][00 | 8 @
= . Operand identifier:
Operand type:

Address:

Bit number:





image21.jpeg
_rogramming » CPU_1516F [CPU 1516F-3 PN/DP] » PLCtags » Tag table_sorting station [1]

[@Tags [@ User constants

# P BT i =
Tag table_sorting station
Hame Datatype |Address Retsin Visibl.. |Acces... Comment
a o Bool [ %Q0.0 [v] =] [ [conveyor motor M forwards fired speed

Add ne M @




image22.jpeg
|@ Tags |@ User constants

& BT i
Tag table_sorting station

Name Data type | Address

a o Bool
a o Bool

%Q0.0
%Q0:1

B

Retsin

Acces... Comment
@ conveyor motor At orwards fred speed

@ [comeyor motor-t backuaros fea speed]

~





image23.jpeg
D:\Automation\032_100_FC-Programming\032_100_FC-Programming

Project Edit View Insert Onine

U Y| soveproiect & ¥

Options.

X Do

Tools

Window  Help

0 B RS coonine ¥ cootine fip I

x

500

~ 1 032,100 FCprogramming
B Add new device
2 Deices & netorks
~ [ CRU_1516F [CPU 1516F-3 PNIDF)
Y evice confguration
% Oniine & disgnostics
» i Program blocks
» [ Technology objects
» G Excernal zource flez
~ L& cags
% Showslitags
I Add newtog able
% Standardvarablentabell (54]
5 Tag oble_sarting staten (2]
» L picdata spaz
» (5 vetch and force tables
» (& Onine backup
» G5 Taces
B} program infa

Ll

.sogramming b CPU_1516F [CPU 1516F-3 PNIDP] » PLCtags »

o iy
Tag table_sorting station
Name Detatype Addres e Visbl
a o Bool  %Q00
aa @ ool %Q01 @
> 1 6 E I
T2 msertrow
| 2 Add row
x o6l a
Rename [

o2 wenioren

| epontle

|8 properties

hcces
-
@

@




image24.jpeg
Import completed with warnings (0032:000031)

Import completed with warnings.

Detailed information is shown in the importlog
fle.

Click here to view the log fle.




image25.jpeg
@ Tags [@ User constants

el moay

FFD TR =
Tag table_sorting station
ame Dsta ype |Address _Reain Vbl |Acces. |Comment
@ o ool [2]%000 171 Comieyor metar W i BEd Speed &

conveyor moter 1 backvards fied speed.

Crossreference information Shikes

Fetun signal emergencysiop ok (1)
s zwich 0N (20)

mode selector manuel®) sutomatic(t)

pushbution sutsmati tar n0)

pushbuton automaicstep (nc) =
Sensorcyinder Ak rerscted ()

sensor inder 4 exended (n0)

sensormtor M1 acte (pulse signal for osisening) ()

sensor partatside (n0)

“
=]
-
=]
“
@
@
=]
=
13| °7 Moritorai @ Sara A heA A U]
15| mponfie @ sensorpartin fontofinder 44 (10)
1| egonsie @ sensorparatend of canveyor nc)
81 roperies @ pushbutton menual made conveyor - frverds (1)
" M oo 7] pushbutton manual mode conveyor -4 backords ()
nia s Bool w6 @ pushbutton manual mode ¢linder 4 revact (ne)
W@ s seol ] pushbutton manual mode eyinder b extend (10)
W@ a tool @ Comeyor motor 4 forwards bed speed
w a @ sool @ comeyor motor 41 backvirds ed speed
3 a o Bool %002 ] comveyormotor A vaisbe speed
2 e w sool %003 @ epinder a4 revact
3@ 4w bool 5004 ] cyinder 44 exend
% @ Bool  %Q0S @ apley.main sitch on”
5 @ » wool %006 @ splay.manualmode”
= o 1 b e





image26.jpeg
View _insert _Online _Options.
£ % open. o
| wigrate project

cotaw

| cose

Delete project

Archive.
Retrieve

B Card ReaderlUse memory »

F Memorycard e 3

| & pine culp

& it preview:

DiAutomationi012_10.012_101_CPUTS16F
CiUserslspelDo..1032_100_FCProgramming
DiAutomationl013_10..1013_101_CPU314C
DiVerlsgenprojeks_Webzerv_Tenk V13_SP1
D1.1032:200_FE frogrammierung_S7-314.

DAAutometisi_J012-100_CPUTS00_V13_SP1

et

Tools

Lo

Window Help

Totally Integrated Automation
PORTAL

T Oniine beckups
» [ maces
5} programinfo
» [ Device proxy data
PLCalamns

Tex st
» [ Local modules
+ G5 common data

~betails view

Detotype | Comment Nome

B
—— o g
Tag table_sorting station s

Name Duta type [Address _[Retain_[Visbl. | Accss. | Comment -
@ A Gool [5[500 [v] [ W rewmsignsl emergencysiop ok (o) A

@ <« Gl w01 @ @ meinswitch, 0N (o) £
5@ so ool w02 B @ mode selector menual(®) fautomatie() £l
“ila = wol w03 B B pusbuton sutomaticstart(ro) ®
sila s ool %0s @ @ pushbutonsutometicstop () }
& la = ool w0s @ @ sensorcyinder rewacred (o)
ia = sool w06 B B sensorcyinder-bk exended n0) <

a = Gool 07 @ 8 sensormotor actice pule signal or

a ool w0 @ @ sensorparatsice (o)
o @ e ool w1 @ B sensormentpar(o)
Woa e ool w2 B 8@ seniorpartinuntefolinder s o)

a @ Bodl i3 @ @ semsorpanatend ofconveyor(no)

a = sool i @ B pushburon manual mode conveyor-hi 5
Wola  se sool s B B pushbuton manual mods conveyor -1

a s fool s @ @ pushburon manual mode cinder-ts re

a s Bool w7 @ © pushbuton manual mode cinder-1 ex.

a o ool %00 @ @ coneyormotor-hn foards fed speed

a Q@2 Bool %Q0.1 =] & conveyor motor M1 backwards fixed speed
© a0 Bool %002 @ #  comeyormotor-oi verisble speed
0 @ e aool %003 @ @ cinderamreme

a Bool Q04 1] cfinder W exend

a = ool %05 @ @ displey.moinsvitchon”

a ~ Bool %006 @ @ display.menual mode’

a = ool %07 @ @ isplay.sutometic mode”

a Bool %10 @ @  disploy.emergencystop activated” L
T foal 011 [~ I~ T e siaged

/g Properties |} Info @ | % Diagnostics

4 Portal view




image27.png




image28.jpeg
pelDocumentsiAutomatisierung\032_200_FB-Programming\032_200_F¢ —aX

Totally Integrated Automation
PORTAL

Device: Sl new block

Nome:

Devices & @ Show all objects o

networks = .
@ Addnew block ;

PLC L | e D ol

programming “—a‘; Number: i

5 Organiztion O wenuel

Motion & block o

tachnology @ Automatic

Drive Y

parameterizai = Descrption:

P ® srow progam s

Diagnostics
Eunction

L 0]
Data block |

> | Additi

) Add new and open

» Project view ‘Opened project: C:Users\spe\Documents\Automatisierung\032_200_FB-Programming\032_200_FB-Programming




image29.png




image30.png
Add new block

Name:
WOTOR_AUTO[

]

Organization
block

5

Function block

e

Data block

Language: F&D -
Number: 7

O Manual

® Automatic
Description:

Function blocks are code blocks that store their values permanentlyin instance data blocks,
S0 that they remain available after the block has been executed.

More...

> | Additional information

) Add newand open




image31.jpeg
10

EEE i)
MOTOR_AUTO
=
Q= won
SET
e
i~ s
@~

@~ Constant

Data type.

W eEGERD

Defaultvalue | Retain

E)

@

& Tl

Accessiblef...|Visible i

[

3| [100%

>~}

W





image32.jpeg
032-200_FB-Programming » CPU_1516F [CPU 1516F-3 PN/DP] » Program blocks » MOTOR_AUTO [FB1] X

G F P g EREC8: Gt (R &7 B =
MOTOR_AUTO

1 neme Datat...|Defaul. Retsin | Acce... Visl..|Setp... | Comment

i@ ~ i

Bl -~

il ~ oupue
B8l G mosutneie e 0o | wEH @ @ [Convl ofhe conveyor motorm sutamati mode_|

@~ inowt

@~ swic

@~ Temp





image33.jpeg
00_FB-Programming » CPU_1516F [CPU 1516F-3 PN/DP] » Program blocks » MOTOR AUT

B 2% 1% & H =1
MOTOR_AUTO
Name Dstst. Defaul. Retsin Acce.. Visbl. Seip.. Comment
il inpue
i@ Auomstcmode scive Bool ke None. O O Automatic mode activated
Slas  sun 8ol e N @ B Pushbution sutomstic start
las s Bool ke None. @ @ Pushbuton sutomstic stop
S @s  Enableok Bool fke  None. O O Al enable condition: OK |
6 @s  Sefershuofsctive sl e N7 B O [Safety shutof acive ¢ . emergency stop operated |
W = s
& @ v ouput =
9 @ Comvejormotorsutomatic mode Bool e None. @ @ Controlof the conveyor motor in sutomatic mode
$] s addnew
i@ v mout
8 = <din
5@~ swic
G s <acdnew
5@ emp i
Bal < IE]
=] W B





image34.jpeg
i B & H =
MOTOR_AUTO
Neme Datat...Defaul. Retsin | Acce... Vishl. |Setp... |Comment
i@ mpur 5
2 o@s Auomsicmode scive 8ol vorr. 0 O Automstic mode sctvated i
Sias  son 8ol V. @ 0 Pushbutton sutomstic star
‘@ swp 8ol Norr. @ @ Pushbutton automatic stop
S @s  Ensbleok 8ol N | Al enable condiions 0K J
6 @n  sshenshuofscive 8ol Nonr. 0 O Ssety shutof scive e 9. emergency stop operated
i - L
8 @ oupu
S @s  Comeyormowrsuomatcmode Bool Gk Nonr. @ @ Control o the conveyor motorin automstic mode
o] =
e
B = <dine
5@ swic
§l@ = Memonynutomatic startstop |Bool N.[Fl @ @ [ [Memoyusedforsoristopsuomatcmode |





image35.jpeg
MOTOR_AUTO

Name Datat... | Defaul.. |Retain |Acce... Visibl.. |Setp... | Comment
i@~ nput (&
2 Automatic_mode_active Bool  false  Nomr. [ [ Automatic mode activated "—
3 sun bool  Ble Non. B | @ Pushbution suomaticstan |
4 stop Bool  fale Nonr. @ @ Pushbutton automatic stop I
= abRioR BT e o Al enibie Ganditer oK L
e safery_shutofL sctive bool  ble Nonr. B @ Safeyshutoffactive ., emergen.
7 @~ oupn
Bl s  Comeyormotorsutometic mode Bool  flse  Novr. @ @ Control ofthe conveyor motorina,
5 @~ mou
[l . ine
1@ v swic
T o - e SR

e 1]

¥ Block title: Motor control in automatic mode

+ Conveyor motor in automatic mode:
The bit Memory_sutomatic_stare_stop is set with the input Start, but only fthe reset conditions.
are not fuiled.

The bit Memory_sutomatic_Star_stop is reset with the input Stop or ifthe safety shutoffis
activated or if the automatic mode is not activated ( manual mode). ‘

IfMemory_sutomatic_stare_stop i set, the enable conditions are granted and
Memory_conveyor_Start_stop is set the output Conveyor_motor_automatic_mode is activated

For reasons of energy eficiency the conveyor motor should only run ifa partis present. il
Tnerefore Memory_conveyor_start_stop s set ifthere i a part detected in front of Sensor_slide

2nd reset with 2 negative edge at Sensor_end_of_conveyor or ifthe safety shutoffis activated

orifthe automatic mode is not activated ( manual mode).

v Network 1: Memoryautomatic_start_stop and control ofthe conveyor motor in automatic mode

=





image36.png
s 7

L

o4




image37.png




image38.png
LEGaART 1% & =
Data type | Defaultvalue |Retin | Access... Visible . | Setpoint | Comment

i@~ input
2 @ =  Automatic mode_active Bool  fase Non-retain [ 8 Automatic mode a...
3@ ser Bool  fae Non-retain [ =] Pushbutton autom.
4 @s  stwp Bool false Non-retain [ =] Pushbutton autom.
5 @=  Enable OK Bool false Non-retain [ o] All enable conditio...
6 |@s  safety_shutoff_active Bool false Non-retain [ (=) safetyshutoffactiv.. |« [asic instructions.
7 @ o = e -
& <4@= Conveyor_motor_automatic_mode Bool false Non-retain ™ ~ Control of the conv...
o @~ mout

I A R N

~  Network

: Memory automatic_start_stop and control of the conveyor motor in automatic mode
Comment
Setbitfield

Resetbit fi.
Setfresetfl..





image39.png




image40.png
Insert  Online  Options

Poject  Edit  View
Uf 1 Bl soveproject 5 ¥ =

Tools  Window  Help

Devices

X Dte: B BEER F coonine F cooiiine f [N I8 X

ramming

Totally Integrated Automation
PORTAL

» [ Technology objects
» i} External source files
» [3 PLC tags
» [ PLC data types
» [ Watch and force tables
» [ig Online backups.
» [3 Traces
# program nfo
» [§ Device proxy data
2 PLCalarms
2] Textlists
» (@ Local modules
» (54 Common data
» ) Documentation seffings
Dl st s
» [y Online access
» [ Card Reader/USB memory

Gio© W i} =
MOTOR AUTO

~ [ 032_200_FB-Programming == Data type | Defauttvalue [Retain [Accessible .. |Visiblein ... Setpoint . | Comment H
I Add new device 1 4@~ input r

o Devices & networks 2 @@=  Automatic_mode_active Bool Non-retain 8 8 Automatic mode activated —

~ ([l CPU1516F [CPU 1516F-3 PNIDP] 3la@s  sar Bool Non-retain (=] (=] Pushbutton automatic start @
IIY Device configuration alas  swop Bool Non-retain =] =] Pushbutton automatic stop 2

%/ Online & diagnostics 5 |@=  EnableOK Bool Non-retain (=] (=] Al enable conditions OK- E

~ Il Program blocks 6 @@=  safety_shutoff_active Bool Non-retain (=] (=] Safety shutoff active e.g. emergency stop oper (=
I Add new block. 7 <@~ Output (—

& Main [0B1] & @=  Conveyormotor_automatic_mode Bool false Nonret.[v] @ ™ ‘Control of the conveyor motor in automaticm.. |

E MOTOR_AUTO [F81] 5 @'~ nout 3
T — .

4 -l

» Conveyor motor in automatic mode:

Comment

o4

~ Block title: Motor control in automatic mode

~ €3 Network 1: Memorysutomatic_start.stop and contrlofthe conveyor mtor i sutomatic mode

]

a—

> | Details view

& MOTOR AUTO

| < properties % info @ | 2] Diagnostics |

0_FE-Programmin




image41.jpeg
#Conveyor_
motor_
automatic_
mode




image42.png




image43.jpeg
Conveyor motor in automatic mode:

F Network 1: Memory automatic_start stop and cantrol ofthe conveyor motor in automatic mode

#Conveyor_
motor_
automatic_
mode





image44.jpeg
PNIDP] » Program blocks » MOTOR_AUTO [FB1]

B L% & H =

MOTOR_AUTO
Name Osts .. Defaul. |Retsin | cce...Visibl. | Setp.. | Comment

i@ npue 4]
S @ utomsicmodescive Bool ke None. O O Automatic mode.
Slas sen Bool v, 0 O Pushbutton auto.
Slas  sop Bool e None. @ @ Pushbutton auto... |
5 = [ EaEEeK So [i e [0 00 e
& '@= sy shunfacive Bool  foke Nonr. [ [ Safetyshutofiact
7 @~ oupu
& @s  Comeormotorsutomaticmode ool ke None. @ @ Controlofhe con.
5 @ v mou =

Il

2 osa @ oA - o e
» Conveyor motor in automatic mode:

v 23 Network 1:  Memory automatic_start_stop and control of the conveyor motor in automatic mode.

#Conveyor_
motor_

automatic_
= mode

100%





image45.png
£ SR




image46.png




image47.jpeg
Jene e H El =
il
Datat. |Defaul. Retain | Acce...|Visibl. |Setp... |Comment s
Conveyor_ motor_automatic_mode Bool ke Nonr. M @ Control ofthe con... [~ [ e
Lol » [ General =
% [ Bit logic operations. o2
Static 5 7
fHea AND lo. a
Memory automatic_start stop _ Bool s 8 B O vemoywedbors[o] g onlegi- | |2
L ] | Tx excus,
Aasign
* el i el - Negate .| | ¥
~ Block title: Wotor control in automatic mode &) Reseto..| |5
¥ Conveyor motor in automatic mode: 51 setout.. | |8
 serer Setbitt..
¥ Network 1: Memoryautomatic_start_stop and control of the conveyor motor in automatic mode. S RESET_BF Resetbi.. [
= 158 Sedrese.. |E
L Resetse. |8,
& - scano.. | [&
#conveyor_ & - saano.. [ ||
Rl - setope..
mode - Setope...
e ScanfL.
o £ 1LmG ScanfL.
_ @irme petect...|





image48.jpeg
MOTOR_AUTO
Neme

S @= Conveyor motor_automatic_mode

5 @~ mout

i6
i1 @ v swic
12 @ Memory sutomatic_start stop

Datat.
Bool

Bool [

Defaul,

Remin | Acce... Vbl |Setp...|Commen
None. @ @ Controlofthe con.. 4]
V5] @M O] Memoyused sy,

]

4 -

EEC|

~ Block title:
» Conveyor motor in automatic mode:

Motor control in automatic mode

#Enable_OK— s

~ €3 Network 1: Memory automatic_start_stop and control of the conveyor motor in automatic mode

#Conveyor_
motor_
automatic_
mode





image49.jpeg
[SX* B lafTH =

MOTOR_AUTO
Name Dsts .. Defaul. |Retsin | Acce...|Visibl. |Setp.. | Comment
§ @  Comejormotor sutomstic mode Eool Norr. @ @ Control o the con.. [
5 @~ mou
{8 = <ddnew (=

i swic
i@ Memopsuomstcswrswp ool [E ek . [v] @ @[] Mgmwymmmg

[<] W ]

¢ o B 4 - o 4

~ Block title: Motor contral in sutomatic mode
» Conveyor motor in automatic mode:

v €3 Network 1:  Memory automatic_start_stop and control of the conveyor motor in automatic mode.

#hiemory_
autometic_
startstop .
#Conveyor_
I - motor._
sorf Jms [y automatic_
sen Bool Pushburonaut.| &





image50.jpeg
sMemory_
automatic_
start_stop

SR
smr—s

=r o—

#Enable_OK— 3¢

Conveyor_
motor_
automatic_
mode




image51.png




image52.jpeg
Network 1: Memory automatic_start_stop and control of the conveyor motor in sutomatic mode.

#hemory_
automatic_
start_stop

SR
#swr—s

B3R o

#Enable_OK— 3¢

#Conveyor_
motor_
automatic_
mode




image53.png




image54.jpeg
@

an—i

=1




image55.jpeg
#stp—

#Safery_shutoff_
active —

#Automatic_
mode_active — 3.

#hemory_
automatic_
start_stop
SR
#swr—s

Rt

#Enable_OK— s

#Conveyor_
motor_
automatic_
mode




image56.png




image57.jpeg
#Stop—

#Safery_shutof_
active —

#Automatic_
mode_active B

#hemory_
sutomatic_
start_stop

SR

#seri—s
Rl

a—

#Enable_OK—

#Conveyor_
motor_
sutomatic_
mode




image58.jpeg
I save project




image59.jpeg
1
2 @s  Auomatcmode active
S a@as sen

s as  sop

5 @=  Enableok

& @=  Saferyshutofi acive

7 @~ ouput

Bool
Bool
Bool
Bool
Bool

€ G &8

Defaul.. [Retain | Acce... | Visib.

v, 0 O

Non.
Non.

Non.
Blse Nont.

Comment

Automatic mode activated

Pushbutton automatic start 4

Pushbutton automatic stop
Al enable conditions OK
Safetyshutoffactive e.g. .

e [

[~}

& a4 -

#Stop—

#Safety_shutoff_
active —

#Automatic_
mode_sctive g3 3¢

EEC

>=1

#hemory_
automatic_
strt_stop,

SR
#stn—g

R1 Q—

#Enable_OK— st

~  Network 1: Memorysutomatic_start_stop and control of the conveyor motor in automatic mode.

#Conveyor_
motor.

automatic_
mode

L





image60.jpeg
G Properties  |"ijInfo &)

General

General

General
Information

Time stamps
Compilation
Protection

Name

Tpe:

Language:

Atributes

Download

Number.

@ automstic





image61.jpeg
U 1516F-3 PN/DP] » Program blocks » MOTOR

W T b EA =B/ 2t CeaEaY % &7 B =1
MOTOR_AUTO
Name Dstat.. Defaul. Retsin |Acce.. Vbl Setp.. | Comment
i@~ et
2 @ uomsicmode acve 2ol vore. B B Sutomstic mode sctivated
Slas san 2ol v @ B Pushbuton sutomstic star
e . s 20l None. @ @ Pushbutton automstic stop
[« w__ ]

a4k o

 Block title: Motor control in sutomatic mode
» Conveyor motor in automatic mode:

~  Network 1: Memoryautomatic_start_stop and control of the conveyor motor in automatic mode

=vemory. sConeyor
automate. motor.
Starstop sutomatic_

#swn SR #Enable_OK et

1 F s Q 1 {0}

sstop

— —n
#Safery_shutof_
s

— —

Autom:
mode_

<l W Wi [io0%




image62.jpeg
4 Siemens - C:lUsersispelDocuments\Automatisierungl032-200_FB-Programming\032-200_F8-Program

Project Edit View Inset Online Options Tools Vindow Help

Totally Integrated Automation
5§ % [ save project s MG B 3 coonine ¥ PORTAL

Project tree

Options

s Devices & nerworks
~ ([ CPU_T516F [CPU1516F3 P
ice confouraton
3] Oniine & disgrostics
~ 8 Program blocks
I Add new block
FBI(OH  open
= voror |
» I3 Technology
+ Igh Exermat sou
» G Pctags
» L
Rename
mpile
Dowriosd tod
# Goonine
* G

Cross reference information
X Crossreferenc
lsructure
Assignment st

culer

d Properties  [*4Info &| %l Diagnostics > | Languages & resources

4 Portal view AiteEnter -

the project 032-200. FB-Programiing.




image63.jpeg
Project Edit View Inse Online Options Toc

CF 3 H seveproject & ¥ X 9= (

~ 1 032200 FeFrogramming
1 Add new device
b Devices & networks
~ [l CPU_1516F [CPU 1516F-3 P_.
I} Device configuration
4] Ornline & isgnostics
~ 2 Program blocks
5 Add new block
48 Mein [0B1]
B ARTOR AUTO 5]




image64.jpeg
032-200_FB-Programming » CPU_1516F [CPU 1516F-3 PNIDP] » Program blocks » Main [0B1]

1 1 e ="=>H8 GBEEAT L &7 B 2
Main
Nome Detatype T
i@ e
i@ mwlcl soal Il callofhis OB
Bl mreeres soal —True,ifremanent ot are availsble
av wem
u) |s= o [ [ [

~ Block title: “Main Program Sweep (Cycle)”

~  Network 1: Control conveyor motor forwards in automatic mode





image65.jpeg
Project Edit View Insert Onine Options

Tools  Window Help.

Totally Integrated Automation
PORT,

Funsel e

()

[

5§ [ [ soveproject X D& : 3 MG E R S coonline R AL
Project tree o 4
Devices | Options
X EE [ % 2 68 B &% [E—
Main [ Favorites
~ 11032200 fBrogramming Nome osatype Defautyoive | Comment
I Add new device @~ inpu sl G =
#h Devices & networks @s  inielcal 800l Initial cal of this 08 g
~ [ CPU_1516F [CPU 151673 P @+ Remanence Beol =True, ifremanent data are aveilsble il
Y Device configuration @~ Temp
‘2] Online & disgnostics . ;
v I3 Program blocks. =
2 Frog
1 Add new block B [ R O]
v Block title: “Mein Program Sweep (Cycle)”
T Technology objects -
» G Exemal source flex > Network 1: Contol conveyor metar forvards in autamatic mode
» L@ PLCtags =
» [ PLCdato spes
» [ Wetch and force tables
» E Online backups = i
» [ Taces
B oot [ Basic instructions
i Name
al o » [] Genens!

~ [ Details view.

Name Address

=

» i 8t logic operations
» (@) Timer operations

> | Extended instructions

B

> | Technology

> | Communication

|'a Properties

> | Optional packages





image66.jpeg
"Call options

Data block
EB Name 2
Number
single
instance O wenial
@ Automatic

The called function block saves its data in its own instance
data block.




image67.jpeg
s1

oo Ao
Ly
BT

"MOTOR_AUTO"

o

oo acive

fes

o0 e

enabie 0C  auomete]

o]

safery_
shutoft active

ENO|





image68.jpeg
- o 4]

w081
“MOTOR_AUTO_
8"
w81
"MOTOR_AUTO"
~—EN
Automatic_
false — mode_active
false —Start
i | Conveyor_
stop motor_
fols< B2 Enable_OK automatic_
mode —

safety._
— shutoff active ENO—





image69.png
~ @ rctags
% Showall tags.
I Add newtag table
% Default tag table [54]
‘4 Tag table_sorting station [28]
» T PLC data types
» [ Watch and force tables
» [ig Online backups.
» [3 Traces
3§ Program info.
i Dawico s A

v | Details view.

Neme |Data y... | Comment

l@ -Q3 Bool conveyormotor-M1variable sp.[ |
[0 -s0  Bool [E] mode selectormanuai(0) auto..
[@ 1 Bool  pushbutton automatic start (no)
l@ -2 Bool  pushbutton automatic stop (nc)
l@@  -s3 Bool  pushbutton manual mode conv..

¥ €3 Network 1:  Control conveyor motor forwards in automatic mode

Comment

%DB1
"MOTOR_AUTO_DI
%FB1
"MOTOR_AUTO"
—EN
Automatic_mode_
I — -ciic
& false — Start
<n— false — Stop
<—w Enable_OK Conveyor_motor_
Safety_shutoff_ ‘automatic_mode — ...
false — active ENO —




image70.jpeg
B

S

=4

—En

D81
“MOTOR_AUTO_
08"

“MOTOR_AUTO"

%02
%03
w04
L
s
w6

mode selectorman... | A
pushbuton sutom
pushburion sutor
pushbution manual.
pushbution manuel.
pushbutton manual.. ||





image71.jpeg
w81
“MOTOR AUTO_
08"

“MOTOR_AUTO™

L—EN

W2 Automatic_
*50' — mode_sctive

& w03
51" — st
o — w04 v
: onveyor_
w05 52 —swp oo
81— Ensble_OK autometic.  %Q0.0
WO Safery REE oY

“AT" — shutofl_active ENO—




image1.jpeg




image72.jpeg
0.1
KO —

s
81—

%081
“MOTOR AUTO_
oE"
w81
“MOTOR_AUTO"
N
U2 Automatic_
*50" — mode_active

w03

51" — s

o2 Conveyor

52" -0 step e
Enable_OK autometic. %00

WO Safery e Q1

“A1" =0 shutoff_active ENO—




image73.jpeg
Name Data type Defoultvalue | Comment
i@~ nput

2 @s intel Coll Bool Initi call ofthis 08

@l

RIS ST

" TYSSRIDRER Corirol conveyor motor forvards i automatic motde

w081
“MOTOR_AUTO_
oF
w81
"MOTOR_AUTO"
o ENO ———
02 Auomatic. S
automatic_ %00
mode —"-Q1"

w0 ws
k0" 81"

— ———— ———enable ok

%00
A Safery_
— A chuoscie





image74.jpeg




image75.jpeg
Project Edit View insert Online Options Tools Window Hel
5F P saveproject X e Mg |

Project tree

“Compi
Devices
HOQ > | i X = T
Main
~ 1 032200_F8 pogramming T
e @~ nput

b Devices & networks
~ [l CPU_1516F [CPU 1516F-3 P.
I Device coniguration
4 Online & disgostics

o Prograin blocks
1 Ad new block
& Mein [0B1]
4 MOTOR_AUTO [FB1]

_initial_Call





image76.jpeg
[ Properties  |%i}Info @[] Diagnostics
| General g Cross-references | Compile | Syntax |
(©][2]/@] [showsll messages I
Compiling completed (errors: 0; warnings: 0)
1 [path Description Goto rors
@ - cruisier 2 o
@  ~ Frogmblocks 7 o
) NOTOR AUTO (F81)  Block was successully compiled. 2
Q MOTOR_AUTO_DB (DB1)  Block was successfully compiled. Lol
Q Main (0B1) Block was successfully compiled. Lol
[} Compiling completed (errors: 0; warnings: 0)





image77.png




image78.jpeg
Siemens

Ci\Users\spe\Documents\Automatisierung\032-200_FB-Programming\032-200_FE-

4 Portal Overview

v The

project 032-200_F8-Programming

Project Edit View insert Online Options Tools Window Help i e
F Y B saveproject & ¥ X 9 5 M B R coonline F cooiline | A I8 [ % 1] PORTAL
Project tree Kl
Devices 5]
0 Flas &2 H =E
2
~ 1 032200_F& frogramming g
B Add newdevice a
gh Devices & networks
vl CPUIST6F [CPUT5T6F 3 7
Y Device configuration
] Online & disgnostics
~ I Program blocks wwp1
I Add new block “MOTOR AUTO.
2 vain [081] o5
4 MOTOR_AUTO [FB1] w81 -
@ VOTOR AUTO_DE [0B1] MOTOR_AUTO'
~ [ Technology objects. ey
I Add new object 02 Automatic_ W
» lif Excemal source fles 50" — mode_sciive =
t0gs B a w03 E
» L ricug e w3 i
W 1] w01 sun 2
KO" — w04 i
" w5 *52" 0 510p conieror. | |
ity Enable_OK automatic_  %Q0.0
Name wo [ modz — Q1"
I Device configuration 41" =0 shutoftactive o —
%) online & diagnostics
I8 Frogram blocks
< Frog ;
[ Technology objects <] . [>][100% ]
Eioa) s flas [d Properties "} Info @ [ %) Diagnostics |




image79.jpeg




image80.jpeg
..0_FB-Programming » CPU_1516F [CPU 1516F-3 PNIDP] » Program blocks » Main [0B1]

EEE

B: G:[

3
I
&
m

Bl ekars = & B =2

s sm ]
~  Network 1: Control conveyor motor forwards in automatic mode (&
%81
*MOTOR_AUTO_
0"
BT
MOTOR_AUTO™
—Jen

W02 |Automatic_
*50" —|mode_active

. o
. = |
KO — w4 |
i 5 sop S
B — ————————————Ensble 0K automatic_| %Q0.0

W00 |safety oiEl— 1"

*-A1" ~qlshutofl active ENo—





image81.jpeg
sat @ A

Network 1: Control conveyor motor forwards in automatic mode

TRUE
0.1
ot

by

s

D8"





image2.png
Cooperates
with Education

Automation

SIEMENS





image82.jpeg
Comment

Culashifsl
CulashifsT
Culeshifsp

culx.
culec
colev

oel

»
Crossreference information ShiftsF11
Show overlapping sccesses

Change instance
Updte block call

(i Insert network ek
Insert ST nework

{7 insert emptybox ShifsFs

¥ Insertinputand output  CulsShifs3

Properties AHsEnter





image83.jpeg
(PP b EOEDE: @R e sy &EE

Call path: Main [081]
o e A o ]

v [Block title: | Motor controlin automatic mode.
» Conveyor motor in automatic mode:...

¥ Network 1: Memoryautomatic_start_stop and control of the conveyor motor in automatic mode.

Comment

#5t0p =

FALSE
#safery_shutofl_

active -.

TRUE
shutomatic_ |
mode_sctive —ofst

2Conveyor_
motor

automatic_

mode

SuomnsU|

BunseL i

g
z





image84.jpeg




image85.jpeg
Call'environment of block
O ene.

@ instance data block

MOTOR_AUTO_DE [081] T

O callenvironment

© Menusllyadjusted call environment

o[ corcel |





image86.jpeg
Call environment of block X

O Hone

O Instance data block

@ callenvironment

Dependency structure 1 Address Detsils
|11 4 Mein (MOTOR_AUTO_DEB") 081 Main W1 (Co.

Transfer to “adjusted manually”

© Wenusllyadjusted call environment





image87.png
2_200_FB-Programming

interlage

Poject |Edit View Insert Online Options Tools Window Help Totally Integrated Automation
[3f New... s B MG E R F coonine F coofiine £y 8 PORTAL
3 open... ctiso

Migrate project...

Close culaw
Hsave culss |

saveas... Culsshittss

Delete project. CtiisE

Suoponnsu]

Retrieve. e
W Card ReaderiUSB memory > > Network 1: Control conveyor motor forwards in automatic mode
T Memory card fle > ;
omment
Upgrade
& print. culp %DB1
& print preview... "MOTOR_AUTO_DB1"
Di00_DATAL..1032_200_F8-Programming %EB1
D100_TIA..1032-100_FC-Programmierung MOTOR AUTO"

D100_TIA..032-200_F8-Programmierung

Di00_TIA_Po..1032_100_FC-Programming [ BN

D: \bschlusspruefung_Teil1_Mechatr_. %I0.2  Automatic_mode. u_|—J
Exit "-50" — active 3
> 52l Watch and force tables & %0.3 g
» [ig online backups 51" — start
» [ Traces I
58§ Programinfo %04
» [, Device proxy data "-52"-05top
LA PLC alarms. Enable_OK
Textlists
» 0 Lol moduls poretl =
» (54 Common data
» [5] Documentation settings %n.o
» [ Languages & resources "-B4" — Sensor_slide Conveyor_motor_ ~ %Q0.0
» i Online access %13 Sensor end of DTS ]
» [ Card ReaderlUsg memory <] i
> | Details view

< Portal v




