SCE Training Curriculum | TIA Portal Module 032-100, Edition 05/2017 | Digital Factory, DF FA
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][image: PLC_141027_0108-1 (141217)_sRGB]

	

 (
SCE Training Curriculum
)

 (
Siemens Automation Cooperates with Education |

05/2017
)

[image: Unbenannt-1][image: Beschreibung: SIE_Logo_Layer_Petrol_RGB_A4_56mm]TIA Portal Module 032-100
Basics of FC Programming
with SIMATIC S7-1500

Matching SCE trainer packages for these training curriculums

SIMATIC Controllers
· SIMATIC ET 200SP Open Controller CPU 1515SP PC F and HMI RT SW
Order no.: 6ES7677-2FA41-4AB1
· SIMATIC ET 200SP Distributed Controller CPU 1512SP F-1 PN Safety
Order no.: 6ES7512-1SK00-4AB2
· SIMATIC CPU 1516F PN/DP Safety
Order no.: 6ES7516-3FN00-4AB2
· SIMATIC S7 CPU 1516-3 PN/DP
Order no.: 6ES7516-3AN00-4AB3
· SIMATIC CPU 1512C PN with Software and PM 1507
Order no.: 6ES7512-1CK00-4AB1
· SIMATIC CPU 1512C PN with Software, PM 1507 and CP 1542-5 (PROFIBUS)
Order no.: 6ES7512-1CK00-4AB2
· SIMATIC CPU 1512C PN with Software
Order no.: 6ES7512-1CK00-4AB6
· SIMATIC CPU 1512C PN with Software and CP 1542-5 (PROFIBUS)
Order no.: 6ES7512-1CK00-4AB7

SIMATIC STEP 7 Software for Training
· SIMATIC STEP 7 Professional V14 SP1 - Single license
Order no.: 6ES7822-1AA04-4YA5
· SIMATIC STEP 7 Professional V14 SP1- Classroom license (up to 6 users)
Order no.: 6ES7822-1BA04-4YA5
· SIMATIC STEP 7 Professional V14 SP1 - Upgrade license (up to 6 users)
Order no.: 6ES7822-1AA04-4YE5
· SIMATIC STEP 7 Professional V14 SP1 - Student license (up to 20 users)
Order no.: 6ES7822-1AC04-4YA5

Note that these trainer packages are replaced with successor packages when necessary.
An overview of the currently available SCE packages is provided at: siemens.com/sce/tp

Continued training
For regional Siemens SCE continued training, get in touch with your regional SCE contact siemens.com/sce/contact

Additional information regarding SCE
siemens.com/sce

Information regarding use
The SCE training curriculum for the integrated automation solution Totally Integrated Automation (TIA) was prepared for the program "Siemens Automation Cooperates with Education (SCE)" specifically for training purposes for public educational and R&D institutions. Siemens AG does not guarantee the contents.

This document is to be used only for initial training on Siemens products/systems. This means it can be copied in whole or part and given to those being trained for use within the scope of their training. Circulation or copying this training curriculum and sharing its content is permitted within public training and advanced training facilities for training purposes.

Exceptions require written consent from the Siemens AG contact: Roland Scheuerer roland.scheuerer@siemens.com.

Offenders will be held liable. All rights including translation are reserved, particularly if a patent is granted or a utility model or design is registered.

Use for industrial customer courses is expressly prohibited. We do not consent to commercial use of the training curriculums.

We wish to thank the TU Dresden, especially Prof. Dr.-Ing. Leon Urbas, the Michael Dziallas Engineering Corporation and all other involved persons for their support during the preparation of this training curriculum.

Table of contents
1	Goal	5
2	Prerequisite	5
3	Required hardware and software	6
4	Theory	7
4.1	Operating system and application program	7
4.2	Organization blocks	8
4.3	Process image and cyclic program processing	9
4.4	Functions	11
4.5	Function blocks and instance data blocks	12
4.6	Global data blocks	13
4.7	Library-compatible code blocks	14
4.8	Programming languages	15
5	Task	16
6	Planning	16
6.1	EMERGENCY STOP	16
6.2	Manual mode – Conveyor motor in manual mode	16
7	Structured step-by-step instructions	17
7.1	Retrieve an existing project	17
7.2	Create a new tag table	18
7.3	Create new tags within a tag table	20
7.4	Import "Tag_table_sorting_station"	21
7.5	Create function FC1 "MOTOR_MANUAL" for the conveyor motor in manual mode	25
7.6	Define the interface of function FC1 "MOTOR_MANUAL"	27
7.7	Program FC1: MOTOR_MANUAL	30
7.8	Program organization block OB1 – Control of the forward belt tracking in manual mode	37
7.9	Program organization block OB1 – Control of the backward belt tracking in manual mode	42
7.10	Save and compile the program	44
7.11	Download the program	45
7.12	Monitor program blocks	46
7.13	Archive the project	48
8	Checklist	49
9	Exercise	50
9.1	Task – Exercise	50
9.2	Planning	50
9.3	Checklist – Exercise	51
10	Additional information	52

Basics of FC Programming
[bookmark: _Toc486001037]Goal
In this chapter, you will get to know the basic elements of a control program – the organization blocks (OBs), functions (FCs), function blocks (FBs) and data blocks (DBs). In addition, you will be introduced to library-compatible function und function block programming. You will get to know the Function Block Diagram (FBD) programming language and use it to program a function (FC1) and an organization block (OB1).
The SIMATIC S7 controllers listed in Chapter 3 can be used.
[bookmark: _Toc486001038]Prerequisite
This chapter builds on the hardware configuration of SIMATIC S7 CPU1516F-3 PN/DP. However, other hardware configurations that have digital input and output cards can be used. You can use the following project for this chapter, for example:
SCE_EN_012_101__Hardware_Configuration_CPU1516F.zap13

[bookmark: _Toc476507354][bookmark: _Toc476506833][bookmark: _Toc462187877][bookmark: _Toc486001039]Required hardware and software
1	Engineering station: requirements include hardware and operating system
(for additional information, see Readme on the TIA Portal Installation DVDs)
2	SIMATIC STEP 7 Professional software in TIA Portal – as of V13
3	SIMATIC S7-1500/S7-1200/S7-300 controller, e.g. CPU 1516F-3 PN/DP –
Firmware as of V1.6 with memory card and 16DI/16DO and 2AI/1AO
Note: The digital inputs should be fed out to a control panel.
4	Ethernet connection between engineering station and controller
 (
2
 SIMATIC STEP 7 Professional (TIA Portal) as of V13
)[image: 004] (
1
Engineering station
)[image: G_SY02_XX_00070I]

 (
4
 Ethernet connection
)

 (
Control panel
)[image:] (
3
 SIMATIC
S7
-1500
 controller
)[image: S7-1500_MC]

[bookmark: _Toc486001040]Theory
[bookmark: _Toc486001041]Operating system and application program
Every controller (CPU) contains an operating system, which organizes all functions and processes of the CPU that are not associated with a specific control task. The tasks of the operating system include the following:
· Performing a warm restart
· Updating the process image of the inputs and outputs
· Cyclically calling the user program
· Detecting interrupts and calling interrupt OBs
· Detecting and handling errors
· Managing memory areas
The operating system is an integral component of the CPU and comes pre-installed.
The user program contains all functions that are necessary for executing your specific automation task. The tasks of the user program include the following:
· Checking the basic requirements for a warm restart using startup OBs
· Processing of process data, i.e. activation of output signals as a function of the input signal states
· Reaction to interrupts and interrupt inputs
· Error handling during normal program execution
[bookmark: _Toc486001042]
Organization blocks
Organization blocks (OBs) form the interface between the operating system of the controller (CPU) and the application program. They are called from the operating system and control the following operations:
· Cyclic program processing (e.g. OB1)
· Startup characteristics of the controller
· Interrupt-driven program processing
· Error handling
A project must have an organization block for cyclic program processing at a minimum. An OB is called by a start event as shown in Figure 1. In addition, the individual OBs have defined priorities so that, for example, an OB82 for error handling can interrupt the cyclic OB1.

[bookmark: _Ref380071861]Figure 1: Start events in the operating system and OB call

When a start event occurs, the following reactions are possible:
· If an OB has been assigned to the event, this event triggers the execution of the assigned OB. If the priority of the assigned OB is greater than the priority of the OB that is currently being executed, it is executed immediately (interrupt). If not, the assigned OB waits until the higher-priority OB has been completely executed.
· If an OB is not assigned to the event, the default system reaction is performed.

Table 1 gives a couple of examples of start events for a SIMATIC S7-1500, their possible OB number(s) and the default system reaction in the event the organization block is not present in the controller.
	Start event
	Possible OB numbers
	Default system reaction

	Startup
	100, 123
	Ignore

	Cyclic program
	1, 123
	Ignore

	Time-of-day interrupt
	10 to 17, 123
	-

	Update interrupt
	56
	Ignore

	Scan cycle monitoring time exceeded once
	80
	STOP

	Diagnostic interrupt
	82
	Ignore

	Programming error
	121
	STOP

	IO access error
	122
	Ignore

[bookmark: _Ref381356432]Table 1: OB numbers for various start events

[bookmark: _Toc486001043]Process image and cyclic program processing
When the cyclic user program addresses the inputs (I) and outputs (O), it does not query the signal states directly from the input/output modules. Instead, it accesses a memory area of the CPU. This memory area contains an image of the signal states and is called the process image.

The cyclic program processing sequence is as follows:
1. At the start of the cyclic program, a query is sent to determine whether or not the individual inputs are energized. This status of the inputs is stored in the process image of the inputs (PII). In doing so, the information 1 or "High" is stored for energized inputs and the information 0 or "Low" for de-energized inputs.
2. The CPU now executes the program stored in the cyclic organization block. For the required input information, the CPU accesses the previously read process image of the inputs (PII) and the results of logic operation (RLOs) are written to a so-called process image of the outputs (PIQ).
3. At the end of the cycle, the process image of the outputs (PIQ) is transferred as the signal state to the output modules and these are energized or de-energized. The sequence then continues again with Item 1.
 (
1
. Save status of inputs in PII.
)

 (
PII
) (
PLC program in the program memory
1st instruction
2nd instruction
3rd instruction
4th instruction
...
Last instruction
)
 (
2.
 Processing the program instruction-by-instruction with access to PII and PIQ
) (
Local data
)

 (
Bit memory
)
 (
Data blocks
)

 (
PIQ
)

 (
3.
Transfer status from the PIQ to the outputs.
)

Figure 2: Cyclic program processing

Note: The time the CPU needs for this sequence is called cycle time. This depends, in turn, on the number and type of instructions and the processor performance of the controller.
[bookmark: _Toc486001044]
Functions
Functions (FCs) are logic blocks without memory. They have no data memory in which values of block parameters can be stored. Therefore, all interface parameters must be connected when a function is called. To store data permanently, global data blocks must be created beforehand.
A function contains a program that is executed whenever the function is called from another code block.
Functions can be used, for example, for the following purposes:
· Math functions – that return a result dependent on input values.
· Technological functions – such as individual controls with binary logic operations.
A function can also be called several times at different points within a program.

 (
Organization block
Main [OB1]
Calls the MOTOR_MANUAL [FC1] function
)

 (
MOTOR_MANUAL [FC1]
Contains a program for controlling a conveyor in manual mode, for example.

The function has no memory.
)

Figure 3: Function with call from organization block Main [OB1]

[bookmark: _Toc486001045]
Function blocks and instance data blocks
[bookmark: _Ref378858821]Function blocks are code blocks that store their input, output and in-out tags as well as static tags permanently in instance data blocks, so that they are available after the block has been executed. For this reason, they are also referred to as blocks with "memory".
Function blocks can also operate with temporary tags. Temporary tags are not stored in the instance DB, however. Instead, they are only available for one cycle.
Function blocks are used for tasks that cannot be implemented with functions:
· Whenever timers and counters are required in the blocks.
· Whenever information must be saved in the program, such as pre-selection of the operating mode with a button.
Function blocks are always executed when called from another code block. A function block can also be called several times at different points within a program. This facilitates the programming of frequently recurring complex functions.
A call of a function block is referred to as an instance. Each instance of a function block is assigned a memory area that contains the data that the function block uses. This memory is made available by data blocks created automatically by the software.
It is also possible to provide memory for multiple instances in one data block in the form of a multi-instance. The maximum size of instance data blocks varies depending on the CPU. The tags declared in the function block determine the structure of the instance data block.

 (
Instance data block MOTOR_AUTO_DB1 [DB1] as memory
for
 the call of function block MOTOR_AUTO [FB1]
)
 (
Organization block
Main [OB1]
Calls function block MOTOR_AUTO [FB1] together with its instance data block MOTOR_AUTO_DB1 [DB1]
)
 (
Function block MOTOR_AUTO [FB1]
Contains a program for controlling a conveyor in automatic mode, for example
The function block uses instance data block MOTOR_AUTO_DB1 [DB1] as memory in this call.
)

Figure 4: Function block and instance with call from organization block Main [OB1]
[bookmark: _Toc486001046]
Global data blocks
In contrast to logic blocks, data blocks contain no instructions. Rather, they serve as memory for user data.
Data blocks thus contain variable data that is used by the user program. You can define the structure of global data blocks as required.
Global data blocks store data that can be used by all other blocks (see Figure 5). Only the associated function block should access instance data blocks. The maximum size of data blocks varies depending on the CPU.
 (
Access only for function data block_12
) (
Access for all blocks
) (
Instance
DB
(
DB_Instance
)
) (
Global
DB
(DB_Global)
) (
Function_
block_12
) (
Function_11
) (
Function_10
)[image: Datenbausteine]
[bookmark: _Ref381356466]Figure 5: Difference between global DB and instance DB.

Application examples for global data blocks are:
· Saving of information about a storage system. "Which product is located where?"
· Saving of recipes for particular products.

[bookmark: _Toc486001047]
Library-compatible code blocks
A user program can be created with linear or structured programming. Linear programming writes the entire user program in the cycle OB, but is only suitable for very simple programs for which other less expensive control systems, such as LOGO!, can now be used.
Structured programming is always recommended for more complex programs. Here, the overall automation task can be broken down into small sub-tasks in order to implement a solution for them in functions and function blocks.
In this case, library-compatible logic blocks should be created preferentially. This means that the input and output parameters of a function or function block are defined generally and only supplied with the current global tags (inputs/outputs) when the block is used.
[image: 28_fc_done]
[image: 41_ob1_done]
[bookmark: _Ref380074713]Figure 6: Library-compatible function with call in OB1
[bookmark: _Toc486001048]
Programming languages
The available programming languages for programming functions are Function Block Diagram (FBD), Ladder Logic (LAD), Statement List (STL) and Structured Control Language (SCL). For function blocks, the GRAPH programming language is additionally available for programming graphical step sequences.
The Function Block Diagram (FBD) programming language will be presented in the following.
FBD is a graphical programming language. The representation is based on electronic switching systems. The program is mapped in networks. A network contains one or more logic operation paths. Binary and analog signals are linked by boxes. The graphical logic symbols known from Boolean algebra are used to represent the binary logic.
You can use binary functions to query binary operands and to logically combine their signal states. The following instructions are examples of binary functions: "AND operation", "OR operation" and "EXCLUSIVE OR operation". These are shown in Figure 7.
[image: 001_network_logic]	[image: 010-210 Logik 1 - Tabelle 2]
[bookmark: _Ref380081148]Figure 7: Binary functions in FBD and associated logic table
You can thus use simple instructions, for example, to control binary outputs, evaluate edges and execute jump functions in the program.
Program elements such as IEC timers and IEC counters provide complex instructions.
The empty box serves as a placeholder in which you can select the required instruction.
Enable input EN (enable)/ Enable output ENO (enable output) mechanism:
· An instruction without EN/ENO mechanism is executed independent of the signal state at the box inputs.
· Instructions with EN/ENO mechanism are only executed if enable input "EN input has signal state "1". When the box is processed correctly, enable output "ENO" has signal state "1". As soon as an error occurs during the processing, the "ENO" enable output is reset. If enable input EN is not connected, the box is always executed.
[bookmark: _Toc486001049]
Task
The following functions of the sorting station process description will be planned, programmed and tested in this chapter:
· Manual mode – Conveyor motor in manual mode
[bookmark: _Toc486001050]Planning
The programming of all functions in OB1 is not recommended for reasons of clarity and reusability. The majority of the program code will therefore be moved into functions (FCs) and function blocks (FBs). The decision on which functions are be moved to FCs and which is to run in OB 1 is planned below.
[bookmark: _Toc486001051]EMERGENCY STOP
The EMERGENCY STOP does not require a separate function. Just like the operating mode, the current state of the EMERGENCY STOP relay can be used directly at the blocks.
[bookmark: _Toc486001052]Manual mode – Conveyor motor in manual mode
Manual mode of the conveyor motor is to be encapsulated in a function (FC) "MOTOR_MANUAL". On the one hand, this preserves the clarity of OB1. On the other hand, it enables reuse if another conveyor belt is added to the station. Table 2 lists the planned parameters.
	Input
	Data type
	Comment

	Manual_mode_active
	BOOL
	Manual mode activated

	Pushbutton_manual_mode
	BOOL
	Pushbutton manual mode conveyor on

	Enable_OK
	BOOL
	All enable conditions OK

	Safety_shutoff_active
	BOOL
	Safety shutoff active, e.g. emergency stop pressed

	Output
	
	

	Conveyor_motor_manual_mode
	BOOL
	Control of the conveyor motor in manual mode

[bookmark: _Ref381356509]Table 2: Parameters for FC "MOTOR_MANUAL"
Output Conveyor_motor_manual_mode is ON as long as Pushbutton_manual_mode is pressed, manual mode is activated, the enable conditions are OK and the safety shutoff is not active.
[bookmark: _Toc486001053]
Structured step-by-step instructions
You can find instructions on how to carry out planning below. If you already have a good understanding of everything, it will be sufficient to focus on the numbered steps. Otherwise, simply follow the detailed steps in the instructions.
[bookmark: _Toc486001054]Retrieve an existing project
Before we can start programming the function (FC) "MOTOR_MANUAL", we need a project with a hardware configuration (e.g. SCE_EN_012_101_Hardware_Configuration_S7-1516F_R1502.zap). To retrieve an existing project that has been archived, you must select the relevant archive with Project Retrieve in the project view Confirm your selection with Open. (Project Retrieve Select a .zap archive Open)
[image: 01_retrieve]
The next step is to select the target directory where the retrieved project will be stored. Confirm your selection with "OK". (Target directory OK)

[bookmark: _Toc486001055]Create a new tag table
In the project view, navigate to the PLC tags of your controller and create a new tag table by double-clicking Add new tag table.
[image: 02_neutagtable]

Rename the tag table you just created as "Tag_table_sorting_station" (right-click "Tag_table_1" "Rename" Tag_table_sorting_station).
[image: 03_rename]
Open this tag table with a double-click. (Tag_table_sorting_station)
[image: 04_rename_open]
[bookmark: _Toc486001056]
Create new tags within a tag table
Add the name Q1 and confirm the entry with the Enter key. If you have not yet created additional tags, TIA Portal now automatically assigns data type "Bool" and address %I0.0 (I 0.0) (<Add> Q1 Enter).
[image: 02_QQ]
Change the address to %Q0.0 (Q 0.0) by entering this directly or by clicking the drop-down arrow to open the Addressing menu, changing the operand identifier to Q and confirming with Enter or by clicking the check mark. (%I0.0 Operand identifier Q [image: Z:\Projekte\Siemens-SCE-Wissensplattform_2\projekt\FC-Programmierung\Screenshhots\Screenshhots\2014-07-14 13_35_56-MyDropDownDialogForm.jpg])
[image: 02_QQ]
Enter the "Conveyor motor M1 forwards fixed speed" comment for the tag.
[image: 02_QQ]

Add a new Q2 tag in line 2. TIA Portal has automatically assigned the same data type as in line 1 and has incremented the address by 1 to %Q0.1 (Q0.1). Enter the comment "Conveyor motor M1 backwards fixed speed".
(<Add> Q2 Enter Comment Conveyor motor M1 backwards fixed speed)
[image: 01_QQ]
[bookmark: _Toc486001057]Import "Tag_table_sorting_station"
To insert an existing symbol table, right-click on an empty field of the created "Tag_table_sorting_station". Select "Import file" in the shortcut menu.
(Right-click in an empty field of the tag table Import file)
[image: 01_QQ]

Select the desired symbol table (e.g. in .xlsx format) and confirm the selection with "Open".
(SCE_EN_020-100_Tag_table_sorting_station… Open)

When the import is finished, you will see a confirmation window and have an opportunity to view the log file for the import. Click OK.
[image: 11_import_message]

You can see that some addresses have been highlighted in orange. These are duplicate addresses and the names of the associated tags have been numbered automatically to avoid confusion.
Delete the duplicate tags by selecting the lines and pressing the Del key on your keyboard or by selecting "Delete" in the shortcut menu.
(Right-click on selected tags Delete)
[image: 02_QQ]

You now have a complete symbol table of the digital inputs and outputs in front of you. Save your project under the name 032-100_FCProgramming.
(Project Save as ...032-100_FCProgramming Save)
[image: 12_saveas]

[bookmark: _Toc486001058]
Create function FC1 "MOTOR_MANUAL" for the conveyor motor in manual mode
In the PLC programming section of the portal view, click "Add new block" to create a new function.
(PLC programming Add new block [image:])
[image: 13_newblock]

Rename your new block to: "MOTOR_MANUAL", set the language to FBD and keep automatic assignment of the number. Select the "Add new and open" check box. You are then taken automatically to your created function block in the project view.Click "Add".
(Name: MOTOR_MANUAL Language: FBD Number: Automatic [image:] Add new and open Add)
[image: 14_newblock]

[bookmark: _Toc486001059]
Define the interface of function FC1 "MOTOR_MANUAL"
If you selected "Add new and open", the project view opens with a window for creating the block you just added.
You can find the interface description of your function in the upper section of your programming view.
[image: 15_newblock_open]

A binary output signal is needed for controlling the conveyor motor. For this reason, we first create local output tag #Conveyor_motor_manual_mode of the "Bool" type. Enter comment "Control of the conveyor motor in manual mode" for the parameter.
(Output: Conveyor_motor_manual_mode Bool Control of the conveyor motor in manual mode)
[image: 16_newblock_schnittstelle]
Add parameter #Manual_mode_active as the input interface under Input and confirm the entry with the Enter key or by exiting the entry field. Data type "Bool" is assigned automatically. This will be retained. Next, enter the associated comment "Manual mode activated".
(Manual_mode_active Enter Bool Manual mode activated)
Add parameters #Pushbutton_manual_mode, #Enable_OK and #Safety_shutoff_active as additional binary input parameters under Input and check their data types. Add descriptive comments.
[image: 17_newblock_interface]

For purposes of program documentation, assign the block title, a block comment and a helpful network title for Network 1.
(Block title: Motor control in manual mode Network 1: Control of the conveyor motor in manual mode)
[image: 18_title]

[bookmark: _Toc486001060]
Program FC1: MOTOR_MANUAL
Below the interface description, you see a toolbar in the programming window with various logic functions and below that an area with networks. We have already specified the block title and the title for the first network there. Programming is performed within the networks using individual logic blocks. Distribution among multiple networks helps to preserve the clarity of the program. In the following, you will get to know the various ways you can insert logic blocks.
[image:]
You can see a list of instructions you can use in the program on the right side of your programming window. Under Basic instructions Bit logic operations, find function –[=] (Assignment) and use a drag-and-drop operation to move it to Network 1 (green line appears, mouse pointer with + symbol).
(Instructions Basic instructions Bit logic operations –[=])
[image: 19_assignement]

Now use drag-and-drop to move your output parameter #Conveyor_motor_manual_mode onto <??.?> above the block you just inserted. The best way to select a parameter in the interface description is by "grabbing" it at the blue symbol [image:].
([image:] Conveyor_motor_manual_mode)
[image: 20_assignement_tag_added]

This determines that the #Conveyor_motor_manual_mode parameter is written by this block. Still missing, however, are the input conditions so that this actually happens. For this, use drag-and-drop to move input parameter #Manual_mode_active to the left side of the assignment block.
([image:] Manual_mode_active)
[image: 21_assignement_tag_added]
The input of the assignment block will also be logically combined with other parameters by an AND logic operation. To do this, first click the input of the block to which #Manual_mode_active is already connected, so that the input line has a blue background.
[image: 22_assignemet_and]

Click the [image:] icon in your logic toolbar to insert an AND logic operation between the #Manual_mode_active tag and your assignment block.
[image: 23_assignemet_and]
Double-click the second input of the & logic operation <??.?> and enter the letter "P" in the field that appears in order to see a list of available tags starting with "P".Click the #Pushbutton_manual_mode tag and apply with Enter.
(&- block <??.?> P #Pushbutton_manual_mode Enter)
[image: 23_assignemet_and_newtag]
Note: When assigning tags in this way, there is a risk of a mix-up with the global tags from the tag table. The previously presented procedure using drag and drop from the interface description should therefore be used preferentially.

To ensure that the output can only be controlled when the enable conditions are met and the safety shutoff is not active, the #Enable_OK and #Safety_shutoff_active input tags are logically combined with the AND logic operation. To do this, click twice on the yellow star [image:] of your AND block to add two additional inputs.
[image: 24_assignemet_and_newtag]
Add input tags #Enable_OK and #Safety_shutoff_active to your newly created inputs of the AND block.
[image: 25_assignemet_and_newtag]
Negate the input connected to parameter #Safety_shutoff_active by selecting it and clicking [image:].
[image: 26_assignemet_neg]

Do not forget to click [image: 27_save]. The finished function "MOTOR_MANUAL" [FC1] in FBD is shown below.
[image: 28_fc_done]

Under "General" in the properties of the block, you can change the "Language" to LAD (Ladder Logic) (Properties General Language: LAD)
[image: 29_fc_properties]
The program has the following appearance in LAD.
[image: 30_fc_lad]
[bookmark: _Ref401572038]
[bookmark: _Toc486001061]
Program organization block OB1 – Control of the forward belt tracking in manual mode
Before programming organization block "Main [OB1]", we switch the programming language to FBD (Function Block Diagram). To do so, first click on "Main [OB1]" in the "Program blocks" folder.
(CPU_1516F[CPU 1516F-3 PN/DP Program blocks Main [OB1] Switch programming language FBD)
[image: 31_ob1_switch_language]
Open the "Main [OB1]" organization block with a double-click.
[image: 31_ob1_open]

Assign Network 1 the name "Control conveyor tracking forward in manual/jog mode"
(Network 1:... Control conveyor motor forwards in manual mode)
[image: 32_network1_headline]
Use drag-and-drop to move your "MOTOR_MANUAL [FC1]" function onto the green line in Network 1.
[image: 33_network1_fc1]

A block with the interface you defined and connections EN and ENO are inserted in Network 1.
[image: 34_network1_fc1_raw]
To insert an AND before input parameter "Enable_OK", select this input and insert the AND by clicking the [image:] icon in your logic toolbar ([image:]).
[image: 35_network1_fc1_and]

Click the yellow star [image:] of the AND block to add another input ([image:]).
[image:]
To connect the block to the global tags from "Tag_table_sorting_station", we have two options:
Either select the "Tag_table_sorting_station" in the project tree and use drag-and-drop to move the desired global tag from the Details view to the interface of FC1
(Tag_table_sorting_station Details view. -SO2 Manual_mode_active)
[image:]
Or, enter the starting letters (e.g. "-S") of the desired global tag for <??.?> and select the global input tag "-S0" (%I0.2) from the displayed list (Manual_mode_active -S
-S0).
[image:]

Insert the other input tags "-S3", "-K0", "-B1", "-S4" and "-A1" and insert output tag "-Q1" (%Q0.0) at output "Conveyor_motor_manual_mode".
[image: 38_network1_fc1_finish]
Negate the querying of input tags "-S0", "-S4" and "-A1" by selecting them and clicking [image:] (-S0 [image:] -S4 [image:] -A1 [image:]).
[image:]

[bookmark: _Toc486001062]
Program organization block OB1 – Control of the backward belt tracking in manual mode
Assign Network 2 the name "Control conveyor motor backwards in manual mode" and insert your "MOTOR_MANUAL [FC1]" function using drag-and-drop, as you did previously in Network 1.
[image: 40_network2]
Connect your function as shown here. You obtain the following result in the FBD (Function Block Diagram) programming language.
[image:]

The result in the LAD (Ladder Logic) programming language has the following appearance.
[image:]
[image:]

[bookmark: _Toc486001063]
 Save and compile the program
To save your project, select the [image: 27_save] button in the menu. To compile all blocks, click the "Program blocks" folder and select the [image: D:\00_DATA\SIEMENS\Unterlagen\08_Ausbildungsunterlage_TIA-Portal_R1502_dt\032-100 FC-Programmierung\pics\052.jpg] icon for compiling in the menu
([image: 27_save] Program blocks [image: D:\00_DATA\SIEMENS\Unterlagen\08_Ausbildungsunterlage_TIA-Portal_R1502_dt\032-100 FC-Programmierung\pics\052.jpg]).
[image: 44_compile]
The "Info", "Compile" area shows which blocks were successfully compiled.
[image: 46_message]

[bookmark: _Toc486001064]
 Download the program
After successful compilation, the complete controller with the created program, as previously described in the modules for hardware configuration, can be downloaded
([image:]).
[image: 47_download]

[bookmark: _Toc413765522][bookmark: _Toc486001065]
Monitor program blocks
The desired block must be open for monitoring the downloaded program. The monitoring can be activated/deactivated by clicking the [image: D:\00_DATA\SIEMENS\Unterlagen\08_Ausbildungsunterlage_TIA-Portal_R1502_dt\032-100 FC-Programmierung\pics\055b.jpg] icon. (Main [OB1] [image: D:\00_DATA\SIEMENS\Unterlagen\08_Ausbildungsunterlage_TIA-Portal_R1502_dt\032-100 FC-Programmierung\pics\055b.jpg])
[image: 48_ob1_open]
[image: 48_ob1_online]
Note: The monitoring here is signal-related and controller-dependent. The signal states at the terminals are indicated with TRUE or FALSE.

The "MOTOR_MANUAL" [FC1] function called in the "Main [OB1]" organization block can be selected directly for "Open and monitor" after right-clicking ("MOTOR_MANUAL" [FC1] Open and monitor).
[image: 49_ob1_open_and_monitor]
[image: 49_fc1_monitor]
Note: The monitoring here is function-related and controller-independent. The actuation of sensors and the station status are shown here with TRUE or FALSE.

If a particular point of use of the "MOTOR_MANUAL" [FC1] function is to be monitored, the call environment can be selected using the [image: D:\00_DATA\SIEMENS\Unterlagen\08_Ausbildungsunterlage_TIA-Portal_R1502_dt\032-100 FC-Programmierung\pics\058b.jpg] icon ([image: D:\00_DATA\SIEMENS\Unterlagen\08_Ausbildungsunterlage_TIA-Portal_R1502_dt\032-100 FC-Programmierung\pics\058b.jpg] Call environment OK)
[image: 50_callpath]
[bookmark: _Toc412051847][bookmark: _Toc486001066] Archive the project
As the final step, we want to archive the complete project. Select the "Archive ..." command in the "Project" menu. Select a folder where you want to archive your project and save it with the file type "TIA Portal project archive". (Project Archive TIA Portal project archive 032-100_FCProgramming…. Save)
[image:]

[bookmark: _Toc486001067]
Checklist
	No.
	Description
	Completed

	1
	Compiling successful and without error message
	

	2
	Download successful and without error message
	

	3
	Switch on station (-K0 = 1)
Cylinder retracted / Feedback activated (-B1 = 1)
EMERGENCY OFF (-A1 = 1) not activated
MANUAL mode (-S0 = 0)
Activate conveyor manual mode conveyor forward (-S3 = 1)
then conveyor motor forwards fixed speed (-Q1 = 1)
	

	4
	Same as 3 but activate EMERGENCY OFF (-A1 = 0) -Q1 = 0
	

	5
	Same as 3 but AUTO mode (-S0 = 1) -Q1 = 0
	

	6
	Same as 3 but switch off station (-K0 = 0) -Q1 = 0
	

	7
	Same as 3 but cylinder not retracted (-B1 = 0) -Q1 = 0
	

	8
	Switch on station (-K0 = 1)
Cylinder retracted / Feedback activated (-B1 = 1)
EMERGENCY OFF (-A1 = 1) not activated
MANUAL mode (-S0 = 0)
Activate conveyor manual mode reverse (-S4 = 1)
then conveyor motor backwards fixed speed (-Q2 = 1)
	

	9
	Same as 8 but activate EMERGENCY OFF (-A1 = 0) -Q2 = 0
	

	10
	Same as 8 but AUTO mode (-S0 = 1) -Q2 = 0
	

	11
	Same as 8 but switch off station (-K0 = 0) -Q2 = 0
	

	12
	Same as 8 but cylinder not retracted (-B1 = 0) -Q2 = 0
	

	13
	Same as 8 but also activate manual mode conveyor forwards
(-S3 = 1) -Q1 = 0 and -Q2 = 0
	

	14
	Project successfully archived
	

[bookmark: _Toc486001068]
Exercise
[bookmark: _Toc486001069]Task – Exercise
The following functions of the sorting station process description will be planned, programmed and tested in this chapter:
· Manual mode – extend cylinder
· Manual mode – retract cylinder
Note: Pay attention to the reusability or encapsulation of the functions.
[bookmark: _Toc486001070]Planning
Plan the implementation of the task on your own.
[bookmark: _Toc486001071]
Checklist – Exercise
	No.
	Description
	Completed

	1
	Function FC: CYLINDER_MANUAL created
	

	2
	Interfaces defined
	

	3
	Function programmed
	

	4
	Function FC2 inserted in network 3 of OB1
	

	5
	Input tags connected for Retract cylinder
	

	6
	Output tags connected for Retract cylinder
	

	7
	Compiling successful and without error message
	

	8
	Function FC2 inserted in network 4 of OB1
	

	9
	Input tags connected for Extend cylinder
	

	10
	Output tags connected for Extend cylinder
	

	11
	Compiling successful and without error message
	

	12
	Download successful and without error message
	

	13
	Switch on station (-K0 = 1)
Cylinder retracted / Feedback activated (-B1 = 1)
EMERGENCY OFF (-A1 = 1) not activated
MANUAL mode (-S0 = 0)
Do not activate Retract cylinder (-S5 = 0)
Activate Extend cylinder (-S6 = 1)
then extend cylinder (-M3 = 1) successfully
	

	14
	Switch on station (-K0 = 1)
Cylinder extended / Feedback activated (-B2 = 0)
EMERGENCY OFF (-A1 = 1) not activated
MANUAL mode (-S0 = 0)
Do not activate Extend cylinder (-S6 = 0)
Activate Retract cylinder (-S5 = 1)
then retract cylinder (-M2 =1) successful
	

	15
	Retract cylinder and Extend cylinder cannot be activated simultaneously
	

	16
	Project successfully archived
	

[bookmark: _Toc486001072]
 Additional information

You can find additional information as an orientation aid for initial and advanced training, for example: Getting Started, videos, tutorials, apps, manuals, programming guidelines and trial software/firmware, at the following link:

www.siemens.com/sce/s7-1500

For unrestricted use in educational and R&D institutions. © Siemens AG 2017. All rights reserved.	
For unrestricted use in educational and R&D institutions. © Siemens AG 2017. All rights reserved.	16		
SCE_EN_032-100 FC-Programming_S7-1500_R1703.docx
image2.png
Cooperates
with Education

Automation

SIEMENS

image3.wmf

image4.jpeg

image5.jpeg

image6.emf

image7.jpeg

image8.emf
Operating system

Startup routine

OB 100 Warm

restart ...

ON (Run)

Cycle

Cyclic program

processing

OB 1

Interrupt-driven

program processing

OB 10 ... 17

OB 56

...

Error handling

OB 80

OB 82

OB 121

OB 122

...

Interrupt

Error

Interruption

Interruption

oleObject1.bin
Operating system�

Startup routine

OB 100 Warm restart ...�

image9.png
—
Funktion 10 |1
Globaler DB
(DB_Global)
] —
Funktion_11 [|
Funktions- / Instanz-DB
baustein_12 [™| (DB_Instanz)
l—

Zugriff fur alle Bausteine

Zugriff nur fiir
Funktionsdatenbaustein_12

image10.jpeg
MOTOR_MANUAL

[Neme [Detetype [Defauttvalue | Comment

e o [&]

2i@n Menlmodesche oo o] sl e actiared N

3 @@= Pushbutton_manual_mode Bool Pushbutton manual mode conveyor on le]

4 a- Enable_OK Bool All enable conditions OK.

S @s selenshuofacive ool Safety shutoffactive e.g. emergencystop operated

6@ v it

7 <@= Conveyor_motor_manusl... Bool Control of the conveyor motor in manual mode [
_ 1G]

~ Block title: =

~ Conveyor motor in manusl mode: Ifthe pushbutton_manusl_mode is operated, the ensble
conditions are granted and the ssfety shutoffis not activated the output
Conveyor_motor_manusl_mode is sctivated

~ Network 1: Conuol ofthe conveyor matorin manual mode

O
#Manual_mode_
active B
spushhotton_ S
mancal.mods el
#Enable_OK: mode
p— -
il — -

image11.jpeg
» Block title: “Mein Program Sweep (Cycle)”

» Network 1: Control conveyor motor forwards in manual mode
[ROERITERN ol conveyer o b chvards i e

wer

MOTOR_MANUAL"

—en

W02 Monual_
*50" — mode_active

Pushbutton_
manual_
54" — mode.
Enable_OK
WO Sy,

Conveyor_
motor_

manuall %Q0.1

mode —" Q2"

ENo—

image12.jpeg
Network 1:

Network 2:

Network 3:

AND-Operation
&

n—

#2— —

OROperation

s
n—

m—s -

EXCLUSIVE OROperation

s—
#2—

#Q1

22

#03

image13.png
#el_rea| #al

0

o
- ooo

0
1
1

#el_se2] #a2

ke o
ko
ey

el e[

0o oo
0o 1)1
101
1 1]o

image14.jpeg
Edit View Inset Online Options T

5 New. &
[open o
Wigrate project.

olee prjce.
T Card ReaderlUs8 memory »
T Memory card file »

DiAutomationlo13_10..1013_101_CPU314C
DilAutomationl012_10..1012_101_CPU1S16F
DiVorlagenprojekt_Webserv. iTank V13_sP1
D1.1032:200_F8-Programmierung_S7-314.

DiAutomatisi..J012-100_CPU1500_V13_SP1

Bit

image15.jpeg
Project Edit View Insert Online Options

MG ER S oo

Ui i save e X EEX D@

Project tree.

Devices

50O

~ 1 012,101 crutster
B Add new device
sh Devices & netorks
~ ([l CPU_1516F [CPU1516F-3 PNIDP]
Y Device coniguration
Online & disgnostics

» I Program blocks
» G Technology objects
» li Bxcernal source s
~ i Rctsgs
% showalltsgs
1 Add nevtag table
% Standsravarisblentabelle (341
PLCdsts tpes
» [l stch snd force tables
» [5g Oniine backups
» [Trces
5 Frogram info

» [, Device prowy data
[PLCalarms
Textlists
» [Local modules
¥ [§# Common data

image16.jpeg
Project Edit View Inset Online Options Tools Window Help

5 (% [saveproject X0te: 3 MG Goonline ¥ <

Project tree

|| Devices
LX)

~ 1 012101 crutster
B Add new device
sh Devices & networks
~ [l CPU_1516F [CPU 1516F-3 PN/DP]
Y Device coniguration
4] Online & diagnostics
» I Program blocks
» G Technology objects
» f Excerl source fles
~ [rctsgs
% showslltags
1 Add newtag tsble
% Standsraarisblentabelle 541
1 Tag table_ sorting station [0]
PLC dsta tpes
» Ll Wstch snd force tables
» [& Online backups
» [Traces
B Programint

image17.jpeg
Project

UF 3 seveprojeet & X

Edit View Inzert Onine Options

Tools

X 9

Help
MG ER S coonine J

Devices

QO

) 012_101_crutsen
W Add new device
dhh Devices & networks
~ ([CPU_1516F [CPU 1516F-3 PN/DP]
W eveontytmon
% onine & diagnostics
» (& Pogramblocks
» G Technclogyobjects
» G Exemal source fes
~ (& rctgs
% showalltags
B Add new tag able
54 standardvarisblentsbelle [54]
55 Tag tabi_soring siaton (0]
» [ric data ypes
» G2 Vitch and force tables
» [ig Online backups
» [Toces
5} progrmin
{5, Device proydita
FLC larms
Texlist
» [Local modules
+ g Commondsta

Totally Integrated Automation
PORTAL

B TR
Tag table_sorting station

Sne L

< [beatie view

Detatype | Comment

4 Portal view

Comment:

| Neme Dataspe Address Retin | Visbl...|Acces...|Comment
l z ® @
" Properties | 4Info | % Diagnostics
[General |
e Tag
General
I
| Neme:
il
i Dsta tpe:
Adress:
‘ Gt

% 129 table_so.

image18.jpeg
® D TR 3

Tag table_sorting station
Neme Datatype |Address Retsin | Visibl... |Acces... Comment
a1 ool w00 [5] M &

(2]

image19.jpeg
Operandenkennzeichen:

Operandentyp:
Adresse:

Bitnummer:

[

I

[[x]

image20.jpeg
..rogramming » CPU_1516F [CPU 1516F-3 PN/DP] » PLCtags » Tag table_sorting station [1]
@ Tags [@ User constants_||

g 2 BT 2
Tag table_sorting station
Neme Datatype |Address |Retsin | Visibl.. |Acces... Comment
ia o Bool (][00 | 8 @
= . Operand identifier:
Operand type:

Address:

Bit number:

image21.jpeg
_rogramming » CPU_1516F [CPU 1516F-3 PN/DP] » PLCtags » Tag table_sorting station [1]

[@Tags [@ User constants

P BT i =
Tag table_sorting station
Hame Datatype |Address Retsin Visibl.. |Acces... Comment
a o Bool [%Q0.0 [v] =] [[conveyor motor M forwards fired speed

Add ne M @

image22.jpeg
|@ Tags |@ User constants

& BT i
Tag table_sorting station

Name Data type | Address

a o Bool
a o Bool

%Q0.0
%Q0:1

B

Retsin

Acces... Comment
@ conveyor motor At orwards fred speed

@ [comeyor motor-t backuaros fea speed]

~

image23.jpeg
D:\Automation\032_100_FC-Programming\032_100_FC-Programming

Project Edit View insen Onine

U Y | soveproiect & ¥

L X D0

Options Tools Window Help

[Devces |
500

~ 1 032,100 rcprogrmming
B Add new device
2 Deices & netors
~ 1@ cru_1516F [CPU 151673 DRI
Y evice confguration
% Oniine & disgnestics
» ' Program blocks
» [Technology objects
» G Excernal zource flez
~ L& icags
% showslitags
W Add newtog able
% Standardvarablentabelie [54]
5 Tag oble_sarting staten (2]
» Cig PLC data ypes
¥ 5 Wetch and force tables.
» (& Onine backup
» 5 Taces

B} program nfa

~ Toetails view

etstype | comment | [nome
eool comeyrm. @ Q1
eool coneorm_ @ Q2

i)

Tag table_sorting station

Name
a o Bool
a @

foel

A row

Rename

°2 vonitor ol

Dtatype Adress

%Q00
%Q01

@ Tags [User constants

Retsin Visbl.. Accez... Comment
@ @ conveyormotor M forwards fixed speed
conveyor metar Af bscknards fied zpeed

[

Totally Integrated Automation
i

Options

~ [Find and replace

ORTAL

6 Properties

find.

[vatch cose

@ oomn
Oue

Replace wit

> [Languages & resources

= U

image24.jpeg
Import completed with warnings (0032:000031)

Import completed with warnings.

Detailed information is shown in the importlog
fle.

Click here to view the log fle.

image25.jpeg
D:\Automation\03.

Project Edit View Insert Online

O Ch E sovepoject 3 X

options.

Tools Window Help

86 2 @ coonine F &

Devices
i QO

~ 1 032,100 rCorogramming
B Addnew device
2, Devices & nemorks
~ [CRU_1516F [CPU 151673 PNIDF]
Y evic configuraton
& Oniine & diagnastics
» [Program blocks
» L Technology objects
» i Excernsl zource fles
(@ Pctogs
% showslitags
I Add newtog wble
<% Standardvarsblentabell (54]
35 Tag able_sorting sation (30]
c PLC data spez
» 3 Wetch and force tables.
» (&) Online backup:
» [Tces

5 program info
s

2
Tag table_sorting station

"

Totally Integrated Automation
PORT/

[@ o [@ Userconstants |
=)

5 Nome ey P p— e e —
oA A 2 Conveyormotar W forvards Ted peed
2 Rool —mons conueyor motor i backvard: fied specd
31| incer o etun signal emergencystop ok (10)
a2 main suith OIF (10)
5| X mode selector menual(0)avtomatic(t)
& | copy calec pushbutton sutomatic start (nc)

Crossreference information ShikeF11
22 wonitorall

impore e

porile

d properies

~ [Details view

etatype [Comment | name
eool converm. @ Q1
eool conveyorm_ @ Q2
ecol comveorm. @ Q1
2ol conveyorm_ @ 02

HENRORUNONONNNRNRNENRRRORNRORKE

pushbution automatic stop (nc) =
“enzorcyinder A reracted (o)

sensorcyinder A4 extended (nc)

sensor motor 4t actice (pulse signa for posidioning) (no)

sensor pertatside (no)

sensor mesal part () L
sensorpertin front o yinder 444 (10)

senzorperatend ofconveyor (no)

pushbution manual mode conveyor M1 forwerds (no)

L opr——rre pushbutton manual mode conveyor ~M1 backards (nc)
a s Bool 06 pushbutton manual mode cylinder 44 retact (no)
a s Bool w17 pushbutton manual mode cylider 44 extend (10)
a a Bool %Q00 conveyor motor 1 forwards fed speed
1 a @ Bool %Q01 conveyor motor M1 backwards foed speed
noa o Bool %002 conveyor motor M1 variable speed
a w Bool %Q03 cyinder 1 retact
3 @ . Bool %Q04 cyinder 444 exend
wa Bool %Q0s display,main suitch or”
s @ Bool %Q0s display.manus mods”
8 - 2ol 2 sisclow ous e &

(S Tag table.

image26.jpeg
View _insert _Online _Options.
£ % open. o
| wigrate project

cotaw

| cose

Delete project

Archive.
Retrieve

B Card ReaderlUse memory »

F Memorycard e 3

| & pine culp

& it preview:

DiAutomationi012_10.012_101_CPUTS16F
CiUserslspelDo..1032_100_FCProgramming
DiAutomationl013_10..1013_101_CPU314C
DiVerlsgenprojeks_Webzerv_Tenk V13_SP1
D1.1032:200_FE frogrammierung_S7-314.

DAAutometisi_J012-100_CPUTS00_V13_SP1

et

Tools

Lo

Window Help

Totally Integrated Automation
PORTAL

T Oniine beckups
» [maces
5} programinfo
» [Device proxy data
PLCalamns

Tex st
» [Local modules
+ G5 common data

~betails view

Detotype | Comment Nome

B
—— o g
Tag table_sorting station s

Name Duta type [Address _[Retain_[Visbl. | Accss. | Comment -
@ A Gool [5[500 [v] [W rewmsignsl emergencysiop ok (o) A

@ <« Gl w01 @ @ meinswitch, 0N (o) £
5@ so ool w02 B @ mode selector menual(®) fautomatie() £l
“ila = wol w03 B B pusbuton sutomaticstart(ro) ®
sila s ool %0s @ @ pushbutonsutometicstop () }
& la = ool w0s @ @ sensorcyinder rewacred (o)
ia = sool w06 B B sensorcyinder-bk exended n0) <

a = Gool 07 @ 8 sensormotor actice pule signal or

a ool w0 @ @ sensorparatsice (o)
o @ e ool w1 @ B sensormentpar(o)
Woa e ool w2 B 8@ seniorpartinuntefolinder s o)

a @ Bodl i3 @ @ semsorpanatend ofconveyor(no)

a = sool i @ B pushburon manual mode conveyor-hi 5
Wola se sool s B B pushbuton manual mods conveyor -1

a s fool s @ @ pushburon manual mode cinder-ts re

a s Bool w7 @ © pushbuton manual mode cinder-1 ex.

a o ool %00 @ @ coneyormotor-hn foards fed speed

a Q@2 Bool %Q0.1 =] & conveyor motor M1 backwards fixed speed
© a0 Bool %002 @ # comeyormotor-oi verisble speed
0 @ e aool %003 @ @ cinderamreme

a Bool Q04 1] cfinder W exend

a = ool %05 @ @ displey.moinsvitchon”

a ~ Bool %006 @ @ display.menual mode’

a = ool %07 @ @ isplay.sutometic mode”

a Bool %10 @ @ disploy.emergencystop activated” L
T foal 011 [~ I~ T e siaged

/g Properties |} Info @ | % Diagnostics

4 Portal view

image27.png

image28.jpeg
T4 Siemens - D:\Automation\032_100_FC-Programming\032_100_FC-Programming

Device: (KBRS ~1=}

Devices &
networks

@ Show al objects

Add new block
pLC
programming

Motion &
inology

Drive

parameterization @ e

o @ show program structure

Online &
Diagnostics

» Project view Opened project:

Add new block

Totally Integrated Automation
PORTAI

Name:
Block_1

= |
“oB
Organiztion
block

Function block

3

Function

SeB
ostablock |

Language: 5
Number. i

O vrwal

@ Auometic
Descripton:

Functions are code blocks or subroutines without dedicated memory.

> | Additional information

) Add newand open

\utomation\032_100_FC-Programming\032_100_FC-Programming

image29.png

image30.jpeg
Add new block

Organiation
block

E o3

Function block

E 3

Function

Data block

Language: 78D -

Number:

O hsrual

@ Automstic

Description:

Functions are code blocks or subroutines without dedicated memory.

More..

> | Additional information

) Add new and gpen

Add

image31.jpeg
MOTOR_MANUAL
Name
@~ input

@~ ouput

@~ inout

@~ Temp

@~ Rewn
@@= MOTORMANUAL

G F E ke ERE(E)

Datatype

.77..

Void

Default velue

al

m

~ Block title:

[>] [100%

image32.jpeg
FEE LA

MOTOR_MANUAL

Nome
@~ input

~ output

> Inout
Temp

a
a

a

a-~
@~ conswnt
@
-

Conveyor_motor_manual...

Dota type

Bool

(SRR CRER 2

Defoult value

Control of the conveyor motor in

image33.jpeg
.C-Programming » CPU_1516F [CPU 1516F-3 PN/DP]

WP e EE =8 =
MOTOR_MANUAL

Nome Dstaype Defoultvalue | Comment
Bax
Zi@s wenusLmodescive |Bool Monusl mode activated
@ s Fushbuton mansal_mode| Bool Pushbuton manus| mode conveyor on
“l@s enableox 800l AlSTabRE GO
@+ Seeoshuoacie |sool Sufetyshutoffactive e . emergencysiop operated_|
B = e
7 @~ ouput
e Controlofthe conveyor motorin manual mode
ola
—~
zla
—
15 ‘
16/ v Reum
fila= VOORMNIAL Void

image34.jpeg
W Tk EAE
MOTOR_MANUAL

Nome Data type
i@ nput

2 @ Menuelmodeacive Bool

5 @ Pushbutton manualmode Bool

i @s Enableok 8ool

5 @ s shuofiacive Bool

Bl = <addn

7 @~ ouput

& @ Conveyormotormanual.. Bool

Blecaes

Defoultvalue | Comment

Manual mode activated
Pushbutton manusl mode conveyor on
Al enable conditions OK

Control of the conveyor motor in manual mode.

Safety shutoffactive e.g. emergency stop operated.

I

e s B A e]
~ Block title:

Conveyor_motor_manual_mode is activated

| Conveyor motor in manual mode: Ifthe pushbutton_manual_mode is operated, the enable
conditions are granted and the safety shutoffis not

fvated the output

~ Network 1: Control ofthe conveyor motorin manual mode

C]

image35.png
s 7

L

o4

image36.jpeg
Options

~ Block title:

[+ Conveyor motorin manual mode: f the pushbution_manual_mode is operated, the enable
conditions are granted and the safety shutoffis not activated the output
Conveyor_motor_manual_mode s activated

~ Network 1: Control ofthe conveyor motor in manual mode

R & B & |L om
MOTOR_MANUAL > | Favorites
Neme Duta e Defoultvalue | Comment S
@ v mput e
Zo@s enuslmodescive eool Vonual mode activared e
S0@ = Pushbuton_manuslmods sool Pushbutton manuslmode conveyor on PN
ii@s Enableok sool Allensble conditons oK e
S o@s ssRyshuofacive eool Safety shutof active 9. emergencysiop operated =
& <@~ output F
Fllas Coveyomotormsnual. Bool Contolofthe conveyor motor in manual mode
) e 0 I
PERETEE i SR T I O |

1 reserer
st
s
[l
B -

[
Extended instructions

[+|> [Technology

Suomnasu]

Bunsal |

Sfse L]

Sowean]

image37.png

image38.jpeg
8: B ecadad = &7 B =
Name Data type Defaultvalue | Comment
> input
= Menuslmodeacive Bool Manual mode activated
= Pushbutton_manual_mode Bool Pushbutton manual mode conveyor on =
= Enable 0K Bool All ensble conditions OK
Safery_shutofiactive Bool Safety shutoffactive e.g. emergency stop operated

~ output

= Conveyor_motor_manual... Bool Control o the conveyor motorin manual mode

BTN

~ Block,

[+ Conveyor motor in manual mode: f the pushbution_manual_mode is operated, the enable
conditions are granted and the safety shutoffis not activated the output
Conveyor_motor_manual_mode s activated

v €3 Network 1: Control of the conveyor motor in manual mode

image39.jpeg
rogram

g » CPU_1516F [CPU 1516F-3 PN/DP] » Progra

blocks » MOTOR_MANUAL[FC1] — &

didiFE b ERERRGEl BB = &TH =1
MOTOR_MANUAL
Heme Data type Defaultvalue | Comment
i@ i [=
2 4@= Menuol.modesctive Bool [z] Manual mode activted
5 @= Fushbutton_manual_mode Bool Pushbutton manual mode conveyor on
4 l@s Enable ok Bool Al enable conditions OK
5 @ sofen shuwofiacive Bool Safety shutoffactive e.g. emergencystop operated
6 @~ cuput
7 @ Conveyor_motor_manual.. Bool Conrol of the conveyor motorin manual mode |
— R O Ol
o out @ A - o]
~ Block title: [4]

v Conveyor motor in manual mode: Ifthe pushbutton_manual_mode is operated, the enable

conditions are g

ranted and the safety shutoffis not activated the output

Conveyor_motor_manual_mode s activated

Network

Control ofthe conveyor motorin manual mode.

image40.jpeg
#Conveyor_
motor_manual_
mode

Manual mode_

active =

image41.png

image42.jpeg
& e oA

—o o]

= Conveyor motor in manual mode: ffthe pushbutton_manual_mode i operated, the enable
conditions are granted and the safety shutoffis not activated the output
Conveyor_motor_manual_mode is activated

~ Network 1: Control ofthe conveyor motor in manual mode

sConveyor_
motor_manual_
mode
"

#Manual_mode_
active pm L.

image43.jpeg
PNIDP] » Program blocks » MOTOR_MANU.

st P
MOTOR_MANUAL

Neme Data type Defaultvalue | Comment

e BEY !

ST B

T
2 @= Menuslmodeacive Bool Menual mode activated

5 @= Pushbutton_manual_mode Bool Pushbutton manual mode conveyor on]l
4 @s Enableok Bool All ensble conditions 0K

5 @= Seftyshuofacive Bool Saferyshutoffactive e.g. emergency stop operated

5 @~ ouput

7 @= Conveyor_motor_manual... Bool Control ofthe conveyor motor in manual mode -

i 158

~ Block title:

[+ Conveyor motor in manual mode: f the pushbutton_manual_mode is operated, the enable
conditions are granted and the safety shutoffis not activated the output
Conveyor_motor_manual_mode i activated

~ € Network1: Control ofthe conveyor motorin manal mode

#Conveyor_
& motor_manual_
#Manual_mode_ mode
active — =
B =
#Pushbutton_manual mode Bool Pushbuttonma.| &

image44.png

image45.jpeg
#Conveyor_
#Manual_mode_ motor_manual_
active — mode
#Pushbution_ -
manusl_mode — — —

image46.jpeg
#Monual_mode_
sctive —

#Pushbution_ #Conveyor.
manual_mode — motor_manual
#Enable OK— mode

image47.png

image48.jpeg
DRI = I o
~ Block title:

w Conveyor motor in manu: anual_mode is operated, the enable
conditions are granted and the safety shutoffis not activated the output
Conveyor_motor_manual_mode is activated

~ Network 1: Control of the conveyor motor in manual mode

.
Fr—
ol
srustibuton_ scanmeror
il i et mansal
#Enable_OK— mode

#Safery_shutoff_ =
active s - =

image49.jpeg
I save project

image50.jpeg
o

MOTOR_MANUAL
Neme Deta type Default value
v input
= Menual_mode_acive Bool
= Pushbutton_manual_mode Bool
Enable_OK Bool

dve Bool

Safety_shutoft
> output
= Conveyormotor_manual... Bool

BN

s GBI !

Comment

Manual mode activated
Pushbutton manual mode conveyor on

Al enable conditions OK

Safety shutoffactive e.g. emergencystop operated

Control of the conveyor motor in manual mode.

~ Block title:

conditions are granted and the safety shutofiis not activated the output
Conveyor_motor_manual_mode s sctivated

v Network 1: Conuolofthe conveyor motorin manual mode

#Manual_mode_
active

#Pushbutton_ #Conveyor.
manual_mode motor_manual
#Enable_OK. mode

#Safey_shutoft_ =
active —ofss — =

[+ conveyor motor in manual mode: f the pushbutton_manual_mode is operated, the enable

image51.jpeg
[d Properties %) Info)

%) Diagnostics.

General |

Genersl
Information
Time stamps
Compilation
Protection
Aibutes

General

Nome:

Ty
Languagy

Number:

[VOTOR MANUAL
[rc
[Fe0

@ sutomstic

image52.jpeg
516F [CPU 1516F-3 PNIDP] » Program blocks

W ER @8 G2
MOTOR_MANUAL

fw| &

A

Name Data type Defaultvalue Comment
i~ gt
2 a- Manual_mode_active Bool Menual mode activated
5 l40= Pushbutton_menual_mode Bool Pushbutton manual mode conveyor on |
4 @s Ensble ok Bool Al enable conditions OK
S l@s Seeyshuwfecive ool Safety shutofiactve €.9. emergency stop operated
& @ oupue
7 l@s Comeyormotor manual.. Boal Control ofthe conveyor motor in menuel mode

=] W 1G]
~ Block title:

v Conveyor motor in manual mode: If the pushbutton_manual_mode is operated, the enable
conditions are granted and the safety shutoffis not activated the output
Conveyor_motor_manual_mode s activated

~ Network 1: Control ofthe conveyor motorin manual mode
#Conveyor_ u
#Manualmode_ #Pushbution_ #Safery_shutoff. motor_manual_
active manusl_mode #Enable_OK sciive. mode
L 1 (y

image53.jpeg
Project Edit View Inzert Oniine

3 swepiet 8 X

Project tree.

Options

[Devicos |

QO

~] 032.100_Cfrogramming
W Add new device
£h Devices & networks
~ [CPU_1516F [CPU 1516F-3 PNIDP)
Y Device confguration
% Online & diagnostics
~ (3 rrogram blocks
5 A new block

i G
@ worof Open
» 0 Techmolod Y

» [External<| 52 Copy
G Show 3¢ pelere.
[Addne rename
% stand:
- Compile

S Tog el
» (B FLCA00 Y o oo omine
» Covtchand o oo
»] Online ba|

Download to device

» 5 Taces
Frogrami
» [Device pr{
PLCalarm|

¢ Cross-references
Gell structure

Fesignment list
Switch programming

Knovehow prorection

& Frin

pr

4 Postal view.

Tools

languags

Window

culac

oel
2
»

»
culek

Crosseference information ShifsF11

e

Help.

) Properties.

Goanline

AleEncer

&

Gooffine | i 1M M8 2|]

|id Properties

[*sdinfo [Diagnostics

Totally Integrated Automation

PORTAL

Options

v [Find and replace

i B

Languages & resources

S

IS

image54.jpeg
Project

Edit View Insert Onliine Options

5t (% save project

~] 032_100_FCProgramming

I Add new device
sh Devices & networks
~ [CPU_1516F [CPU 1516F-3 PN/DP]
Y Device configuration
] Online & diegnostics
~ [Program blocks
W Add new block
8 Nisin 081}
2 NOTOR_MANUAL [FC1]

Tools

image55.jpeg
=a=ER8: a:Ew e an

Datatype | Defaultvalue | Comment

&

1

2@ Bool [Initial call of this 08

3 @= Remanence Bool =True, ifremanent data are available
4@ Temp

Sl = <ddne

6 @~ Constant

gl - < >

W >

“Nain Program Sweep (Cycle)”

~ Network 1: Control conveyor motor forwards in manual mode

image56.jpeg
0gramming\032_

100_FC-Programming

frojecc Edit View nsert Online Options Tools Window telp
5t (% | save project X 9 5 ME B R Y coonine f coctiine o BB %]

Project tree

QO

~ 1 032_100_Fcrogramming
B Add new device
sh Devices & networks
~ ([0 CPU_1516F [CPU 151673 PNIDP]
I Device confguration
& Online & disgnostics
~ g Program blocks
B Add new block
& Mein [0B1]
o 3 TOR MANUAL]
» T3 Technology objects
~ g Exteral source fles
B Add new externl e
<l PLCmg:
& Show ali tags
W Add newtag table
5 Stendardvarisblentabelle (54]
i Tag table_sorting station (28]
» [PLC dota tpes
» [Watch and force tables
» [ig Online backups
» [Tces
58 Program info

s

» [, Device proxy data

ala

<l

Neme Datatype | Defaultvalue | Comment
i@~ nput
@= initial Call Initi| call ofthis 08
@s Remanence Bool =True, if remanent data are available
i @~ Temp
6 @~ Consmnt

“Main Program Sweep (Cycle)”

Network 1:

Control conveyor motor forwards in manual mode

[3] [o0%

Details

|4 Properties

Tamio 1%

Diagnostics |

Name Address

4 Portal

“Overview

|| General |

General 0

image57.jpeg
@
MOTOR_MANUAL®

Conveyor_
_ motor_
<2772 — Enable_OK. manual
mode — <

Safery_
<2775 — shutoffactive ENO—

image58.jpeg
Control conveyor motor forwards in manual mode

sl
MOTOR_MANUAL™

—En

Manual_
277> — mode_active

Pushbutton_
manual_
s —lgiEE Conveyor_
motor_
<77.2> B Enable_OK manual_
At mode — <

<7772 — shutoflactive ENO—

image59.png
o oo @ A s o
» Block title: “Main Program Sweep (Cycle)”

v €3 Network 1: Control conveyor motor forwards in manual mode.

wct
MOTOR_MANUAL®
—En
Manual_
— mode_active
Pushbution_
manual_
- Conveyor_
motor_
Enable_OK manual_
e mode —

— shutoff active ENo—

image60.png
~ @ PLCtags
% Showall tags.
I Add newtag table
% Default tag table [54]
35 Tag table._sorting station [28]
» [PLC data types
» [Watch and force tables
» [ig Online backups

v | Details view.

Name | Dataty... | Comment
-Q3 Bool _conveyor motor-M1 variable s.. |

50" 'Bool [=] mode selector manuai(0) / auto.

(30

51 Bool pushbutton automatic start (no)
52 Bool pushbutton automatic stop (nc)
-53 Bool pushbutton manual mode con.

v €3 Network 1: Control conveyor motor forwards in manual mode.

Comment
%ECT
MOTOR MANUAL"
w—EN
Manual_mode_
& [——— sctive
<275 — Pushbutton_
<275 <772> — manual_mode
<27 ——————————————Enable oK Conveyor_motor_
Safety,_shutoft_ manual_mode — <77.2>
<777> —active ENO—

image61.png
N

[SR

- 1]

» Block ttle: Mein Frogram Sweep (Cycle)®

v €3 Network 1: Control conveyor motor forwards in manual mode

—en

Co—

w1
MOTOR_MANUAL®

50"
a7
la ~s2°
i 3
i ~sa”
la ~sst

Bool
Bool
Bool
Bool
Bool
Bool

02
03
04
w14
s
16

‘mode selector |
pushbutton aut.
pushbutton aut...
pushbution ma...
pushbution ma
pushbutton ma.

image62.jpeg
w01
0" —

s
81" —

s
sa g

W
MOTOR_MANUAL®

—en
W02 Nanusl_
*50° — mode_sctive
Pushbution_
4 manvel_
*53° — mode
Ensble_OK
400 safety

*A1" — shutof,active

image63.png
I A R

~ Network 1: Control conveyor motor forwards in manual mode.

%FC1
=) “MOTOR_MANUAL"
.
%0.2 Manual_mode_
*-50" —oactive
%I1.4 Pushbutton_
"-$3"— manual_mode
Enable_OK Conveyor_motor_ ~ %Q0.0
%o [manual_mode —"-Q

A1" 0 active ENO—

image64.jpeg
e s B oA = A
» Block ttle: “Hein Frogram Sweep (ycle)”
> Network

Contral conveyor motor forwards in manual mode

v €3 Network 2: Control conveyor motor backwards in manual mode

e
"MOTOR_MANUAL®
—fen

Wonuel_ -
7.7 —{mode_active

Pushbutton_

manual_
<277 —fmode Conveyor.|

2 motor_|

<777 —{Enable_OK manual_|

e mode
7.2 —{shutoff active ENo[—

image65.png
juj

PR R e I]
v Network 1: Control conveyor motor forwards in manual mode
%FC1
& MOTOR MANUAL"
5.1 I — o
%i0.2 Manual_mode_
"-50"—oactive
%14 Pushbutton_
"-53" — manual_mode
Enable_OK
0.0 safety_shutoff_
"-A1" o active
v Network2: Control conveyor motor backwards in manual mode
%FC1
& MOTOR MANUAL"
%0.1 —EN
A= H0.2 Manual mode_
%05 "-50" 0 active
B Pushbution_
%14 — manual_mode
53"—03 Enable_OK
%I0.0 safety_shutoff_
"-A1" o active
Al 0]

Conveyor_motor_
manual_mode —"-Q1"

Conveyor_motor_
manual_mode —"-Q2"

100% 7]

%Q0.0

ENO—

%Q0.1

ENO—

image66.png
1 1 CedmP 2 &7 B =

Ak k- 7 o

~ Block title: “Main Program Sweep (Cycle)®
Comment

~ Network 1: Control conveyor motor forwards in manual mode.

Comment
%FC1
"MOTOR_MANUAL"
EN ENQO ——
%10.2 Conveyor_
g motor_ %Q0.0
Manual_ manual_mode —".Q1"
l/: mode_active
%I1.4 pushbutton_
"-$3"— manual_mode
%10.1 %10.5 %11.5
KO L e
| |] | I/ Enable_OK
%10.0
A1 Safety_
VI shutoff_active

image67.png
Network 2: Control conveyor motor backwards in manual mode.

Comment
%FC1
"MOTOR_MANUAL"
EN ENQO ——
%10.2 Conveyor_
g motor_ %Q0.1
Manual_ manual_mode —".Q2"
] I mode_active
%I1.5 Pushbutton_
"-$4" — manual_mode
%10.1 %10.5 %11.4
KO L " g3e
| |] | Enable_OK
%10.0
A1 Safety_

I/I shutoff_active

image68.jpeg

image69.jpeg
Project Edit View Insen Onfine Options Tools

i swepoiet 3 ¥

i

Window Help

| Devices

EOO

~] 032_100_FCProgramming
B Add new device
ahh Devices & netorks
~ [CPU_1516F [CPU1516F-3 PN/DP]
Y Device configuration
@) Online & diagnostics
Il Program blocks
W Add new block
& Main [0B1]
2 MOTOR MANUAL [FC1]

» G Technology cbject

» Block title
~ Networ

image70.jpeg
g Properties _|*

Jinfo | % Diagnostics

[General | Cross-references [Comy [[syntax_|

O ——

Compiling completed (errors: 0; warnings: 0)

1 Jpath ~ Descrption Gow [Ewors | Wemings [Time

@ - cruisier A o o 1216447
@~ Fogembleds 2 o o 126470
[MOTOR_MANUAL (FCT) ~ Block was successfully compiled.. Pl 12:16:44 M.
& Wain (0B1) Block was successfully compiled. P 12:16:48 P10
© Compiling completed (errors:O; warmings:0) 12164 P14

image71.png

image72.jpeg
/4 Siemens - D:\Automation\0:

Project Edit View lnsert Oniine Options

X 920

& X

GiH

Project tree.

[Devices |

B R coonine i ootiine | o

Totally Integrated Automation

PORTAL

QO

~ [1032.100_Fcfrogremming
W Add new device
£ Devices & networs
= CPU_S16F (U 15163 PNIDR]
Y Devce confguration
% oniine & diagnostics
» (5 rogramblocks
» [Technalogy objects
» G Excemal source fles
» G@rcmg
» 2 ricdata gpes
» 2 Wotch and force tables
» (& Online beckups
» G Toces
rrogram nfo
Device prowydata
FLColarms
Textists
» [Local modules
» [Commondsta
» (&) Documentation settings
» (@ Longuages & resources
» 5 Oniie access
» (3 cord Readerluse memary

~ [oemie view

Name.

4 Postal view.

“Wein Program Sweep (Cycle)”

Control conveyar matar forwards in manual mode.

et
MOTOR_tANUAL
s —en

501 W2 el

o 50" —0 e scive

s Pushbuton.

51— W4 manial:

s mA_jmn Comveyor.

Enable_OK manusll %00

o [N mode —-ar
A1 o Shutoh active ero—

Control conveyar motar backwards in manusl mode

et
"MOTOR_MANUAL"

Suomnnsy]

ETONT

Sowean]

image73.jpeg

image74.jpeg
C-Programming » PN/DP] » Program blocks » Main [0B1]

Bl Ed s &7 B

b

»

[Biock titie: | Moin Frogram Sweep (Cycle)”

Network 1: Control conveyor motor forwards in manual mode.

Wt
“MOTOR_MANUAL*
&
w01
o —
w05
81—
Conveyor_

s motor_
sS40 Enable_OK manuall %00

w0 saiey, mode —"Q1*

“A1" =0 shutoff_active ENO—

image75.jpeg
G e e EREE8 a:EE CGEaT % fFH I

o e A ma o

» iBlocictitie: | “wain Program Sweep (Cycle)” [~
¥ Network 1: Control conveyor moter forwards in manusl mode
Commen

0.1
el

s
i

FALSE
w5
o

image76.jpeg
Wi F ks EE =8 82

W eLEaad N féFH oG

» Block title: "Nain Program Sweep (Cycle)”

~ Network 1: Contrl conveyor motor farwards in manusl mode

Comment

w01
%o

U5
o

FALSE
ws
i

FALSE
WO sake
a1 ~efshy

v Network 2: Control conveyor motor backwards in manual mod

Comment

TRUE
01

oy v
open
Oeine g Cueshitel
Rensme tsg.. Coreshife
Revire tag.. Cuteshifep
X ocut cex

Goto »
Crossreference information. ShifsF11
Show overlapping acces

Create instance.
Update block call

1 Insert network [
Insert ST network

{7 nsert empty box shiftsFs

¥ Insertinputand outpur CurlaShifts3

Properties AlsEnter

B

image77.jpeg
W s =R
Call path: Main [0B1]
~ Biock title:
»

> Network 1: Control ofthe conveyor mator in manual mode

Comment

TRUE
#Manual_mode_
active

TRUE
#Pushbutton_
manual_mode

TRUE
#Enable_OK.

FALSE
#5afery_shutofi
active

image78.jpeg

image1.jpeg

image79.jpeg
Call environment of block

O hone

@ callenvironment

Dependency structure 1 Address Details
B hoin o8t Wein W1 (Co.
2 [@ wein T om Main NW2 (Co...

Transfer to “adjusted manually’

O Menuallyadusted call evironment

okl conce

image80.png
View _Insert _Online

Migrate project...

& print preview..

D100_TIA_Po..1032_100_FC-Programming
DA00_DATAL.032_200_FB-Programming
D100_TIA..1032-100_FC-Programmierung
DA..IAbschlusspruefung_Teil1_Mechatr

Exit

Options Tools

Totally Integrated Automation

PORTAL

Close curlsw
Save as... Ctlsshiftss
Delete project. Ctrise
hi
Retriev
F Card ReaderlUsB memory »
F Memory card fle »
& Print... ctrisp

» [PLC data types
» 5 Watch and force tables
» [ig Online backups
» [Z Traces
program info
» [§: Device proxy data
£ PLCalarms
2] Textlists
» [Local modules
» [§# Common data
Documentation settings
B o e
» [y Online access
» [Card Reader!USE memory

= El3
olntart 2
B A4 o 4] H
~ Network 1: Control conveyor motorforwsrds in manus mode o
o mE
%FC1 H
“MOTOR_MANUAL"
%0.1 I — en ¥
=] 0.2 Manual_mode_ 2
%l0.5 "-S0" —oactive &
B %14 Pushbution_ m
%15 53" — manual_mode =
54" Enable_OK Conveyor_motor_ ~ %Q0.0 g
HO.0 Safety. shutoff_ manual_mode —"-Q1" g
"-A1" -0 active ENO— -
~ Network2: Control conveyor motor bsckwards in manual mode
%FC1
“MOTOR_MANUAL"
%I0.1
<[

Ovenview,

< Portal

