SIEMENS

Siemens Automation Cooperates with Education (= SCE)

© Siemens AG 2011. All Rights Reserved.

SIEMENS

Siemens Automation Cooperates with Education

PCS7 HS - Training Manuals Status: March 2011

PCS7 HS Training Manuals P01-P02_01_En_B.ppt

© Siemens AG 2011. All Rights Reserved

PCS7 Training Manuals Table of Contents

Instruction MODULE 1

- P01-01 Process Description
- P01-02 Hardware Configuration
- P01-03 Plant Hierarchy
- P01-04 Individual Drive Function
- P01-05 Functional Safety
- P01-06 Control Loop
- P01-07 Sequential Function Chart

Instruction MODULE 2

- P02-01 HMI Generation
- P02-02 Alarm Engineering
- P02-03 Importing Plant Design Data

SIEMENS

ooperates with ducation utomation

SIEMENS

SIEMENS

ion tion

SIEMENS

Objective

- Classification of process engineering plants
- P&ID flow diagram of the lab installation
- Locks and recipes for the lab installation

SIEMENS

Classification of Process Engineering Plants

- Classification according to the number of fundamentally different products
 - Single product plant
 - Multi-product plant
- Classification according to the physical structure of the plant
 - Single line plant
 - Multi-line plant
 - Multi-line/multi path plant
- Lab installation as learning example
 - Multi-product and multi-line/multi-path plant
 - Hierarchical breakdown into 4 units

SIEMENS

tion stion SI

SIEMENS

P&ID Flow Diagram of the Lab Installation

© Siemens AG 2011. All Rights Reserved

Industry Sector

SIEMENS

SIEMENS

Locks and Recipes

- Safe operation of the plant requires monitoring the process interventions
- Requirements for the lab installation:
 - Actuators can be activated only if the main switch is on and Emergency Off is unlocked
 - Protection of the tanks against overflow
 - Prevent air intake in the case of pumps
 - Pumps must not work against closed valves

· · · ·

- Manufacturing a product requires a process specification
- Recipe for the lab installation:
 - 350ml from Educt 3 to Reactor 1 and 200ml from Educt 1 to Reactor 2
 - Heating Reactor 1 up to 25°C and 150ml from Educt 2 to Reactor 2 …

- . . .

SIEMENS

SIE

SIEMENS

Objective

- Theory
 - Distributed structures
 - Interfacing with the process
 - Operation principle of the PLC
- Step-by-step instructions
 - Setting up a project
 - Configuring the hardware
 - Configuring the communication network

SIEMENS

Distributed Structures of Process Control Systems

- Special structures lead to scalable process control systems
- Structures are component based and thus easily expandable
- Typical structure:
 - Process management level
 - Control level
 - Field level

Industry Sector

SIEMENS

SIEMENS

Interfacing with the Process

- Two typical ways to interface encoders and actuators with the PCS
 - Directly by means of the bus system (intelligent devices)
 - By means of an electrical standardized signal to a signal module
- Signal modules for
 - Binary signals: DI/DO modules (DI .. digital input, DO .. digital output)
 - I bit of memory is needed for each signal
 - Analog signals: AI/AO modules (AI .. analog input, AO .. analog output)
 - 16 bits of memory is needed for each signal
 - Resolution may be lower nevertheless; for example, 12 bits

SIEMENS

SIEMENS

How the PLC works

- Component on the control level is typically a PLC
- Input and output signals are read in/read out cyclically and stored temporarily in the the process image
- Signal consistency during program processing by accessing the process image

SIEMENS

SIEMENS

Hardware Configuration of the Lab Installation

- AS
 - PS
 - CPU (with Profibus)
 - ET200M (with Profibus)
 - 4x DI
 - 2x DO
 - 1x Al
 - 1x AO
 - CP (with Ethernet)
- ES/OS
 - PC (with Ethernet)

SIEMENS

tation mation

SIEMENS

Objective

- Theory
 - Structuring the lab installation
 - Deriving the visualization
 - Plant hierarchy of the plant and visualization structure
- Step by step instructions
 - Calling the plant view
 - Setting up the plant hierarchy
 - Basic settings for the plant hierarchy

SIEMENS

cation mation

SIEMENS

Structuring the Lab Installation

- structuring using the functional aspect
- hierarchical decomposition in units
 - unit 1: educt tanks
 - unit 2: reaction
 - unit 3: product tanks
 - unit 4: rinsing
- design of a labelling system according to ISA-88
 - site: SCE_factory
 - process cell: A1
 - unit: T1 .. T4
 - equipment module: pumps P00x, valves V00x, levels L00x, temperature T00x, agitator ...

[©] Siemens AG 2011. All Rights Reserved. Industry Sector

SIEMENS

omation

SIEMENS

Deriving the Visualization

- Visualization in the operator system (OS) is derived by using the following steps:
 - Structuring the lab installation
 - Setting up the plant hierarchy
 - Selecting a hierarchical level as OS area
 - Performing a generation run (see P02-01 HMI Generation)
- All hierarchical levels below the level defined as OS area can be automatically displayed
 - Area IDs
 - Navigation hierarchy
 - Face plates for implemented templates
 - Group alarms

SIEMENS

Cooperates with Education Automation

SIEMENS

Plant Hierarchy and the Effect on Visualization

© Siemens AG 2011. All Rights Reserved

Industry Sector

SIEMENS

SIEMENS

Objective

- Theory
 - Individual drive function (IDF)
 - IDF in PCS7
 - IDF motor
- Step by step instructions
 - Setting up symbol tables
 - Setting up CFC for IDF motor
 - Testing the IDF

SIEMENS

SIEMENS

Individual Drive Functions (IDF)

- Hierarchical structuring of the plant according to ISA-88.01
 - Level 0: Individual control unit
- Individual control unit is a recurring element
 - Project wide
 - Beyond projects
- Can be reused
 - Advantages:
 - Parameterization instead of programming
 - Tested functionality
 - Uniform handling and visualization
- Standardization of individual drive units
 - e. g. motor, valve, ...

SIEMENS

SIEMENS

Individual Drive Function in PCS7

- Function blocks as object-oriented model of a technical installation
 - e. g. motors and valves
- Functions:
 - Activation and operating modes
 - Protection and monitoring functions
 - Handling and visualization functions
 - Signaling and alarm functions
- Function block as object-oriented model of a (measuring) signal
 - For example, digital output, digital input, analog output, analog input
- Functions:
 - Scaling the digital value to the physical range
 - Monitoring the signal quality

SIEMENS

SIEMENS

Individual Drive Function Motor (FB 66 in PCS 7 Standard Library)

- Function blocks MOTOR
- Used for controlling pumps and stirrers in the lab installation
- Features:
 - One control signal (on/off)
 - Monitoring by run feedback
- Advantages:
 - No programming of control, protection and monitoring functions
 - Uniform parameters
 - Uniform visualization (see P02-01 HMI Generation)

SIEMENS

Implementation of a Pump of the Lab Installation

- Pump SCE.A1.T2-P001 to empty the reactor content
- Pump is run by a motor
- The motor has the following signals
 - One signal for control
 - One signal for run feedback
- PCS7 standard library
 - MOTOR

SIEMENS

Symbol	Address	Data Type	Symbol Comment
A1.T2.A1T2S003.SO+.O+	l 6.1	BOOL	Pump outlet reactor R001 Feedback on
A1.T2.A1T2S003.SV.C	O 6.3	BOOL	Pump outlet reactor R001 control signal

Industry Sector

PCS7 Training Manuals Module 1 P01-05 Functional Safety

SIEMENS

tion

SIEMENS

Objective

- Theory
 - Plant protection using PCT resources
 - Standardized circuits for plant safety
 - Designing a lock for the lab installation
- Step by step instructions
 - Setting up a CFC for manual motor operation
 - Adding lock for the motor in the CFC
 - Interconnections among CFCs

PCS7 Training Manuals Module 1 P01-05 Functional Safety

SIEMENS

Plant Safety using PCT Resources

- Securing process engineering plants against error states
- In reference to process variables, three areas have to be differentiated

SIEMENS

Designing a Lock for the Pump of the Lab Installation

- The pump must be turned on only if the main switch of the plant is switched on and the Emergency Off switch is unlocked.
- The pump must not take in air; i.e. the level in the reactor has to be at least 50ml
- The pump must not work against closed valves; i.e., at least one valve has to be open

Symbol	Address	Data Type	Symbol Comment
A1.A1H001.HS+START	10.0	BOOL	Switch on multi-purpose plant
A1.A1H002.HS+OFF	O 0.1	BOOL	Activate Emergency OFF
A1.T2.A1T2L001.LISA+.M	IW 512	WORD	Actual value level Reactor R001
A1.T2.A1T2X007.GO+O+	l 6.5	BOOL	Open/close valve indication
A1.T3.A1T3X001.GO+O+	l 12.3	BOOL	Open/close valve indication
A1.T4.A1T4X003.GO+O+	l 14.5	BOOL	Open/close valve indication

PCS7 Training Manuals Module1 P01-05 Functional Safety

omation

SIEMENS

Standard Wiring for Plant Safety

- Substitute analog value A1.T2.A1T2L001.LISA+.M with binary value that is the result of the comparison with 50ml
- Functional table to design the combinatorial circuit

A1H001	A1H002	A1T2L001 > 50ml	A1T2X007	A1T3X001	A1T4X003	LOCK
0	Х	x	х	х	Х	0
Х	0	x	х	х	Х	0
Х	Х	0	х	х	Х	0
Х	Х	x	0	0	0	0
1	1	1	1	х	Х	1
1	1	1	х	1	х	1
1	1	1	X	X	1	1

Result after <<according to>> conjunctive normal form (CNF) is used to lock the pump

Structure of a control loop

Theory

Objective

- PID controller
- Controlling the temperature of the lab installation

Step by step instructions

- Establishing more CFCs
- Parameterizing a continuous controller
- Output of the analog manipulated value as binary signal by means of a pulse generator

© Siemens AG 2011. All Rights Reserved. Industry Sector

PCS7 Training Manuals

Module 1 P01-06 Control LOOP and More Ctrl Functions

SIEMENS

SIEMENS

PCS7 Training Manuals

Module 1 P01-06 Loop Control and More Ctrl Functions

ates with on

SIEMENS

SIEMENS

Structure of a Control Loop

- Process variables have to hold or set certain values
 - Disturbance behavior: A certain value has to be held despite disturbances
 - Response to set point changes: Set point is to be reached in the dynamic and stable mode
- The control loop works as follows:
 - Process value/controlled variable is measured by a sensor
 - Measured value is deducted from the set point and thus the deviation is calculated.
 - Based on the deviation, the controller calculates the manipulated value of the actuator
 - The actuator has an effect on the system

PCS7 Training Manuals

Module 1 P01-06 Loop Control and More Ctrl Functions

SIEMENS

SIEMENS

PID Controller

- From the deviation, the control algorithm calculates the manipulated value
- Process industry uses the PID algorithm up to 95%
 - P means proportional
 - Current manipulated value only depends on current deviation
 - I means integral
 - Current manipulated value depends on the sum of the last deviations
 - D means differential
 - Current manipulated value depends on the change in the deviation
- Only 3 parameters (gain, reset time and derivative time) have to be set
- Controller adjustment rules suitable for processes without dominant dead time
 - Method of Ziegler and Nichols
 - Chien, Hrones and Reswick

PCS7 Training Manuals

Module 1 P01-06 Control Loop and More Ctrl Functions

Temperature Control of the Lab Installation

- Control loop
 - Process/control variable is A1.T2.A1T2T001.TIC.M
 - Manipulated variable is A1.T2.A1T2T001.TV.S
 - Set point is
 - determined by recipe
 - determined manually
 - Iocked (tracking)
- Conditions for locking
 - Minimum level in the reactor has to be 200ml
 - Maximum temperature is 60°C maximum

Industry Sector

SIEMENS

SIEMENS

ation

SIEMENS

Objective

- Theory
 - Structure of step sequences
 - Designing a sequential control system
 - Recipe of the lab installation
- Step by step instructions
 - Setting up and editing sequential function charts (SFC)
 - Connecting SFC and CFC
 - Testing the SFC

SIEMENS

cation S

SIEMENS

Structure of Step Sequences

- Alternating sequence of steps and transitions
 - First step: start step
 - Final step: end step
- Structures:
 - Unbranched step sequence
 - Alternative branches
 - Parallel branches
- Impermissible structures:
 - Uncertain sequence accessibility not ensured
 - Partially stuck internal infinite loop
 - Totally stuck no permissible step enable condition
- Step sequences can be processed once or cyclically

[©] Siemens AG 2011. All Rights Reserved. Industry Sector

SIEMENS

Design of a Sequence Control

- Proven design method for sequence controls
 - State graphs
 - Connected, oriented graph
 - States shown as circles can be linked to actions
 - State transitions shown as arrows subject to transition conditions
 - Petri nets
 - Consists of locations and transitions
 - Locations as circles
 - Transitions as rectangles/cross bars
 - Parallel sequences can be mapped

SIEMENS

SIEMENS

EduktB002inR002

8002.200ml

EduktB001inR002

8002.350ml

10s warten

warten tertig

Rühren

25°COK

R002nachR001

R002.leer

eizen28°CRüh

R001inProdB001

Fertiq

ation nation

SIEMENS

EduktB003inR001

R003 350ml

Heizen25°CRühr.

Recipe of the Lab Installation

- First, 350ml are to be drained from educt tank =SCE.A1.T1-B003 into reactor =SCE.A1.T2-R001 and at the same time 200ml from educt tank =SCE.A1.T1-B002 into the reactor =SCE.A1.T2-R002.
- When reactor =SCE.A1.T2-R001 is filled, the liquid is to be heated to 25°C with the agitator switched on.
- When reactor =SCE.A1.T2-R002 is filled, 150ml from educt tank =SCE.A1.T1-B001 is to be added to reactor =SCE.A1.T2-R002. When this is completed, 10s later the agitator of reactor =SCE.A1.T2-R002 is to be switched on.
- When the temperature of the liquid in reactor =SCE.A1.T2-R001 has reached 25°C, the mixture is to be pumped from reactor =SCE.A1.T2-R002 to reactor =SCE.A1.T2-R001.
- Now, the mixture in reactor =SCE.A1.T2-R001 is to be heated to 28°C and then drained into product tank =SCE.A1.T3-B001.

SIEMENS

ation

SIEMENS

Objective

- Theory
 - Concepts of representation
 - HMI generation in PCS 7
 - Graphic of the lab installation
- Step by step instructions
 - Generating the operator station (OS) in the SIMATIC Manager
 - Configuration environment WinCC
 - Generating pictures using the Graphics Designer

SIEMENS

operates with lucation tomation

SIEMENS

Concepts of Representation

Basic flow diagram, process diagram, piping and instumentation diagram (P&ID)

SIEMENS

ication omation

SIEMENS

HMI Generation in PCS7

- Picture hierarchy can be derived directly from the plant hierarchy
 - Setting up a picture in the corresponding levels
- Using the block icons of templates
 - Deriving the block icons from the plant hierarchy
- Configuring different OS areas
 - For example, unit T1 is monitored by Operator 1, T2 to T4 by Operator 2
- Monitor configuration
 - Representation for different resolutions, number and arrangment of monitors
- Graphics Designer
 - Drawing the process images (static elements)
 - Linking dynamic elements with process variables

SIEMENS

cation

SIEMENS

Graphics of the Lab Installation

- The hierarchy is to include levels 2 and 3 <<refer to Notes Page for translation of terms below>>
 - 🛞 A1_Mehrzweckanlage A1_Mehrzweckanlage.pdl
 - 🛞 A1_Mehrzweckanlage/T1_Eduktspeicher T1_Eduktspeicher.pdl
 - \infty A1_Mehrzweckanlage/T2_Reaktion T2_Reaktion.pdl
 - 🚸 A1_Mehrzweckanlage/T3_Produktspeicher T3_Produktspeicher.pdl
 - 🐯 A1_Mehrzweckanlage/T4_Spülen T4_Spülen.pdl
- Overview display
 - Display of all units
 - Display of the most important information
 - Abstract
- Area display
 - Representation of a unit
 - Representation of block icons of motors and valves
 - Representation based on the P&ID

SIEMENS

tion

SIEMENS

Objective

- Theory
 - Signaling systems
 - Alarms and indications
 - Alarm management in PCS7
- Step by step instructions
 - Integrating the monitoring and alarming blocks
 - WinCC Signalling system
 - Representation of alarms and warnings on the operator station (OS)

SIEMENS

Signaling Systems, Alarms and Indications

- Interface between process and operator
 - Early detection of deviations from the desired state
 - Target oriented intervention to restore the desired state
- Alarm → Display of or report about the occurrence of an event that requires immediate operator action
- Message → Display of or report about the occurrence of an event that does not require immediate operator action
- Characteristics for selecting alarms
 - Relevant
 - Unambiguous
 - Timely
 - Prioritized
 - Understandable

		<	Priority		
	Response time	Seriousness			
$\hat{ }$		Shutdown	Off spec	delay in production	
ority	< 5 min	High	Medium	Low	
Pri	5 - 20 min	Medium	Medium	Low	
	> 20 min	Low	Low	Low	

SIEMENS

SIEMENS

ucation SI

SIEMENS

SIEWIENS

Alarm Management in PCS 7

© Siemens AG 2011. All Rights Reserved. Industry Sector

Page 40

SIEMENS

cation

SIEMENS

Alarms for the Lab Installation

- Monitoring the level
- Monitoring the temperature
- Using Meas_Mon (FB 65) from the folder Control of the PCS7 Library V71
 - Monitoring a measured value (analog signal)
 - Parameters that can be set
 - Warning limit (high/low)
 - Alarm limit (high/low)
- Representation of the block icon
 - In unit T2_reaction
 - Placing and compiling

Monitor_AlT2	2L001	
MEAS_MON Meas.val	0B35 2/2	
CSF	QH_ALM	_
U	QL_ALM	_
QC_U	QH_WRN	
U_AH	QL_WRN	_
U_WH		
U_WL		
U_AL		
HYS		

PCS7 Training Manuals Module 2 P02-03 Importing Plant Design Data

SIEMENS

SIEMENS

Objective

- Theory
 - Design of complex systems
 - Process tag type
 - Model
- Step by step instructions
 - Importing plant design data using the import/export wizard
 - Importing plant design data in the process object view
 - Duplicating charts by generating process tag types/models

PCS7 Training Manuals Module 2 P02-03 Importing Plant Design Data

SIEMENS

SIEMENS

Design of Complex Systems

- Three general design principles
 - Principle of hierarchical arrangement
 - Plant hierarchy
 - Principle of modularization
 - Scope and complexity of function blocks, CFCs and SFCs
 - Principle of reuse
 - Process tag types and models
- Reuse also implies the following
 - Use of proven solutions (standards)
 - Central modifiability
 - Tested implementation

SIEMENS

Process Tag Types and Models

- Process tag type CFC corresponds to the level: individual control unit
- Model entire hierarchies correspond to the levels Technical installation and unit

© Siemens AG 2011. All Rights Reserved

Industry Sector

SIEMENS

Process Tag Types and Models of the Lab Installation

- Selecting similar individual control units
 - Pumps
 - A1T1P001, A1T1P002, A1T1P003 and A1T4P001
 - A1T2P001 and A1T2P002
 - Valves
 - A1T1V001, A1T1V002, A1T1V003, ..., A1T1V006

• • • •

- Selecting similar technical installations
 - Containers
 - A1T1B001, A1T1B002 and A1T1B003
 - A1T2R001 and A1T2R002
 - A1T3B001 and A1T3B002

Cooperates with Education Automation

SIEMENS

Thanks for your attention !

www.siemens.com/sce

© Siemens AG 2011. All Rights Reserved