
 Automation and Drives - SCE

T I A Training Document Page 1 of 34 Module

Training Document for Comprehensive Automation
Solutions

Totally Integrated Automation (T I A)

MODULE C2

High Level Language Programming
with S7-SCL

C2
Issued: 02/2008 High Level Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 2 of 34 Module

This document has been written by Siemens AG for training purposes for the project entitled "Siemens
Automation Cooperates with Education (SCE)".
Siemens AG accepts no responsibility for the correctness of the contents.

Transmission, use or reproduction of this document is only permitted within public training and educational
facilities. Exceptions require the prior written approval by Siemens AG (Michael Knust
michael.knust@siemens.com).

Offenders will be liable for damages. All rights, including the right to translate the document, are reserved,
particularly if a patent is granted or utility model is registered.

We would like to thank the following: Michael Dziallas Engineering, the teachers at vocational schools, and all
others who helped to prepare this document.

C2
Issued: 02/2008 High Level Programming with S7-SCL

mailto:michael.knust@siemens.com

 Automation and Drives - SCE

T I A Training Document Page 3 of 34 Module

 PAGE

1. Preface .. 5

2. Notes on the Development Environment S7 SCL... 7

3. Installing the Software S7 SCL... 8

4. The Development Environment S7 SCL .. 9

5. Sample Exercise .. 11

6 Setting Up a STEP7 Project .. 12

7. Writing a STEP7 Program in S7 SCL ... 16

8. Testing the STEP7 Program in the CPU …………………………………………. 23

8.1 Operating Modes – Test/Process Mode ……………………………………… 23

8.2 Monitoring the STEP7 Program…………………………………………................... 24

8.2.1 Continuous Monitoring…………………………………………................................. 24

8.2.2 Step by Step Monitoring………………………………………… 26

C2
Issued: 02/2008 High Level Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 4 of 34 Module

The following symbols are used as a guide through Module C2:

 Information

 Installation

 Programming

 Sample Exercise

 Notes

C2
Issued: 02/2008 High Level Programming with S7-SCL

 Automation and Drives - SCE

T I A Traning Document Page 5 of 34 Module

1. PREFACE

.
In terms of its contents, Module C2 is part of the teaching unit entitled 'Programming Languages’.

 Fundamentals of STEP7

Programming
2 to 3 days Module A

Industrial Fieldbus
Systems

2 to 3 days Module D

Additional Functions of
STEP7Programming
2 to 3 days Module B

Process
Visualization

2 to3 days Module F

Programming
Languages

2 to 3 days Module C

IT Comminication
with SIMATIC S7

2 to 3 days Module E

Plant Simulation with
SIMIT SCE

1 to 2 days Module G

Frequency Converter
at SIMATIC S7

2 to 3 days Module H

Learning Objective:

In module C2, the reader is introduced to the basic functions of the S7-SCL development
environment. In addition, test functions are discussed for removing logical programming errors.

Prerequisites:

To successfully work through Module C2, the following knowledge is assumed:

• Knowledge in handling Windows
• Fundamentals of PLC programming with STEP 7 (for example, Module A3 – 'Startup’

PLC Programming with STEP 7)
• Basic knowledge of high level language programming, such as Pascal

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming with S7-SCL

 Automation and Drives - SCE

T I A Traning Document Page 6 of 34 Module

Hardware and software required

1 PC, operating system Windows 2000 Professional starting with SP4/XP Professional starting
 with SP1/Server 2003 with 600MHz and 512RAM, free hard disk storage 650 to 900 MB, MS
 Internet Explorer 6.0
2 Software STEP7 V 5.4
3 Software S7 SCL V5.x
4 Software S7 PLCSIM V5.x
4 MPI interface for the PC (for example, PC adapter USB)
5 PLC SIMATIC S7-300 with at least one digital input and output module. The inputs have to be
 taken to a panel

Sample configuration:

 - Power supply: PS 307 2A
 - CPU: CPU 314
 - Digital inputs: DI 16xDC24V
 - Digital outputs: DO 16xDC24V/0.5 A

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

1 PC

2 STEP7

6 SIMATIC S7-300

5 PC Adapter USB

3 S7-SCL

4 S7-PLCSIM

 C2
Issued: 02/2008 High Level Language Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 7 of 34 Module

2. NOTES REGARDING THE PROGRAMMING LANGUAGE S7-SCL

S7-SCL (Structured Control Language) is a higher level programming language that is based on
PASCAL and makes structured programming possible. The language corresponds to the sequential
function chart SFC specified in the standard DIN EN-61131-3 (IEC 1131-3). In addition to the higher
level language elements, S7-SCL also includes typical PLC elements such as inputs, outputs,
timers, flags, block calls, etc. as language elements. It supports the STEP7 block concept and
allows for non-standard programming of blocks, in addition to STL, LAD, and FBD. That means, S7-
SCL supplements and expands the programming software STEP7 and its programming languages
LAD, FBD, and STL.

You do not have to generate each function yourself. You can resort to preassembled blocks such as
system functions and system function blocks that exist in the operating system of the CPU.

Blocks that are programmed with S7-SCL can be mixed in with STL, LAD and FBD blocks. That
means that a block that is programmed with S7-SCL can call another block that is programmed in
STL, LAD or FBD. Correspondingly, S7-SCL blocks can be called in STL, LAD, and FBD programs.

When used in actual application cases, S7-SCL blocks can be recompiled into the STEP7
programming language STL. Recompiling into the S7-SCL is not possible.
During compilation, those blocks are generated from the previously edited program that are runnable
-starting with CPU314- on all CPUs of the S7-300/400 automation system.

The test functions of the S7-SCL allow for the search for logical programming errors in a faultless
compilation. The errors are searched for in the source language.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 8 of 34 Module

3. INSTALLING THE SOFTWARE S7-SCL

S7-SCL is an option package for STEP7. This means, it is assumed that STEP7 is already installed
on your computer. (Refer to Module A2 – Installation of STEP7 V5.x/Handling the Authorization).
S7-SCL is delivered on a CD-ROM that includes a diskette. The diskette contains the license key
(authorization) that has to be transferred to the PC. It makes utilizing the S7-SCL possible.
The authorization can be retransferred to the diskette, to be used on another PC. Starting with
STEP7 Professional V5.3, this license can also be managed via a network. Regarding the topic
Installation and Transfer of Authorizations, please also refer to Module A2 – Installation of STEP7
V5.x/Handling the Authorization.

Now, to install S7-SCL, do the following:
1. Place the S7-SCL CD in the CD-ROM drive.
2. The setup program is started automatically. If not, start it by double clicking on the file '→

setup.exe’.
 The setup program guides you through the entire installation of S7-SCL.
3. To utilize S7-SCL, a license key (authorization) -that is, a utilization authorization- is required

on your computer. You have to transfer it from the authorization diskette to the computer.
This is done at the end of the installation. There, you will be asked in a dialog window by the
setup program whether you want to perform the authorization. If you select YES, you only have
to insert the authorization diskette and the authorization is transferred to your computer.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 9 of 34 Module

4 THE DEVELOPMENT ENVIRONMENT S7-SCL

To use S7-SCL, a development environment is provided that is adjusted to the specific features of
S7-SCL as well as of STEP7. This development environment consists of an Editor, a Compiler, and a
Debugger.

 S7-SCL for S7-300/400

Editor Compiler Debugger

Editor

The S7-SCL editor is a text editor with which any text can be edited. The central task that you will
perform with it is generating and editing source files for STEP7 programs. In a source file, you can
program one or several blocks. The syntax is not checked during the input.

The editor offers the following:
- Editing a complete source file with one or several blocks
- Editing a compilation control file. With it, compiling several source files can be automated
- Utilizing additional functions that make editing the source text possible; such as Search and

Replace.
- Setting the editor according to your requirements; for example, through syntax-conforming

coloration of the different language elements

Compiler

After you have generated your source files with the editor, they have to be compiled into S7 blocks.

The compiler offers the following:
- Compiling an S7-SCL source file with several blocks in one compilation run
- Compiling several S7-SCL source files by using the compilation control file that contains the

names of the source files
- Selectively compiling individual blocks from one source
- Setting the compiler according to your requirements
- Displaying all errors and warnings that occur during compilation
- Localizing the faulty location in the source text, optionally with error description and information

for error removal

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 10 of 34 Module

Debugger

The S7-SCL debugger provides for checking a program during its run in the automation system, and
locating possible logical errors.

S7-SCL offers two test modes for this:
- Step by step monitoring
- Continuous monitoring

For “step by step monitoring”, the logical program sequence is traced. You can execute the program
algorithm instruction by instruction, and observe in a result window how the edited variable contents
change.

With “continuous monitoring“ you can test a group of instructions within a block of the source file.
During the test run, the values of the variables and the parameters are displayed in a chronological
sequence and -to the extent possible- updated cyclically.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 11 of 34 Module

5. SAMPLE EXERCISE

In this example, a natural number is to be squared. Before the result is calculated, a check is to be
made whether the value of the number is larger or equal to 181. If this is the case, the arithmetic
function can be executed, and the result is returned. If not, the return value is to be “-1“.

The number to be squared is to be entered in the integer format by means of an input word. The
output is made by means of an output word. The check and the calculation is to be programmed in a
function.

Assignment List:

IW 0 Input Number to be squared
OW 0 Output Result
FC 1 Square Square function

Program Structure:

Organization Block
OB1

- Calling the function

Square with transfer
of input parameters

- Output of Result

Function “Square“
FC1

- Checking and

calculating the result

- Return of result or

the number "-1“

Note: The value range of a number in integer format is between -32768 and +32767. The largest
possible natural number whose square is in this range is 181. To avoid exceeding the range, a
check is made prior to squaring.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 12 of 34 Module

6. SETTING UP A STEP7 PROJECT

Files are managed with the ‘SIMATIC Manager’, as in STEP7. Here, program blocks can be copied,
for example, or called for further editing with other tools by clicking on them with the mouse. The
operator input corresponds to the standards that are customary for WINDOWS
95/98/2000/ME/NT4.0/XP. (For example, it is possible with one click of the right mouse key to get the
selection menu for each component.)
The hardware configuration of the PLC is mapped in the folders ’SIMATIC 300 Station’ and ’CPU’.
Accordingly, such a project can always also be viewed specific to the hardware.

As in STEP7, each project is set up in a structure that is permanently specified. The programs are
stored in the following directories:

Project:
This directory includes the
hardware (for example,
SIMATIC 300 stations) and
the subnets (such as MPI and
PROFIBUS).

SIMATIC 300 Stations:
Here, the corresponding
hardware configuration
data (Hardware/SC*1) and
CPU data is stored .

Source/SO*1:
Here, sources (such as SCL
sources) are stored which
through compiling can be
converted into runnable
programs.

Blocks/UP off*1:
Here, the program blocks
(OB, FB, FC, SFB, SFC,
DB etc.) are stored.

Symbols/SY*1:
Here, the symbol lists for
symbolic addressing are
stored.

CPU:
Here, the S7
program and the
networked
connection partners
(connections/CO*1)
are entered.

S7 Program:

Here, the user programs
(Blocks/UP off*1), the symbol
tables (Symbols/SY*1) and
sources (Sources/SO*1) are
managed.

*1 Designations from STEP 7 Version 2.x.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 13 of 34 Module

To generate a project regardless of the hardware configuration, it is possible to set up a project that
does not include these folders.

It then has the following structure:

*1 Designations from STEP7 Version 2.x

Note: This example is generated without hardware configuration. Therefore, the programs can be
loaded to any configuration of SIMATIC S7-300, S7-400 or WinAC. Only the addresses of the
inputs and outputs have to be adapted from case to case.

Project:
This directory includes the
hardware (such as SIMATIC
300 stations) and the
subnetworks (such as MPI
and PROFIBUS).

Sources/SO*1:
Here, sources (such as SCL
sources) are stored that can
be converted into runnable
programs through
compilation.

Blocks/UP off*1:
Here, program blocks are
stored (OB, FB, FC, SFB,
SFC, DB etc.).

Symbols/SY*1:
Here, the symbol lists for
symbolic addressing are
stored.

S7 Program:
Here, user programs
(Blocks/UP off*1), symbol
tables (Symbols/SY*1) and
sources (sources/SO*1) are
managed.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 14 of 34 Module

The user has to perform the following steps to generate a project where the solution program can be
written.

1. The central tool in STEP7 is the SIMATIC Manager. It is called here with a double click. (→

SIMATIC Manager)

2. S7-SCL programs are managed in STEP7 projects. Such a project will now be set up (→ File →
New)

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 15 of 34 Module

3. The project is now assigned the ’Name’ ’scl_startup’. (→ scl_startup → OK)

4. In the project ’scl_startup’, a new ’S7 Program’ is inserted. (→ scl_startup → Insert →
Program → S7 Program)

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 16 of 34 Module

7. WRITING THE STEP 7 PROGRAM IN S7-SCL

1. To insert an S7-SCL source, the folder ’Sources’ has to be highlighted. (→ Sources)

2. An ’SCL Source’ is inserted. (→ Insert → S7 Software → SCL Source)

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 17 of 34 Module

3. In the SIMATIC Manager, an SCL source is now available for programming.

Note: You can change the name of the SCL source. This is advisable for better readability of the
program in the case of a complex control task with several sources. To this end, click on the source
with the right mouse key, and select ’Rename’ from the menu.

4. Now, the SCL editor is to be started. To this end, the source in the SIMATIC Manager is
opened with a double click. (→ SCL Source)

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 18 of 34 Module

5. The programming interface for programming in SCL looks like this:

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

Compile source and
generate blocks

In this text editor, the
control job can be
generated by means of
the source code in S7-
SCL

Load blocks
to CPU

Here, the function
’Monitoring’ can be
activated

Save
source

Here, errors and warnings
are displayed that possibly
occurred during
conmpilation

 C2
Issued: 02/2008 High Level Language Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 19 of 34 Module

6. First, the symbol table is to be created. (→ Options → Symbol Table)

7. Enter operands in symbol table (→ Symbol → Address → Data Type → Comment) and

save symbol lists (→).

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 20 of 34 Module

8. Now, the program can be entered in the editor’s text field by using the symbolic names. For the
example in S7-SCL, this could look like this:

 // Squares a number in the integer format if the value is <= 181
 Square :

 // The return is the result of the square or -1 if there is an error
 // The return value is in the integer format

//Define input variable Nbr

Result : //Define temporary variable

//Check whether the value of number <= 181
//If yes, result is square of number

 Nbr) Result : (Nbr)

Result : //If no, result is -1

 Square : (Result) //Type conversion and return

Organization block with call of a function block

//reserved

 //Calling the function Square Output: = square (input);

Note: It is possible to program all blocks of a source file. It should be noted in this case that the
block that is called is always programmed before the block that is calling.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 21 of 34 Module

9. Before the source is stored, the compiler ’Settings’ have to be adjusted. (→ Options →
Settings)

10. Under the tab ’Compiler’, the following settings have to be made. (→ Compiler → OK)

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 22 of 34 Module

11. Now, the program can be saved , compiled and checked for syntax errors. After all

errors are remedied, the blocks can be loaded to the CPU . (→ → →)

 Square
Squares a number in the integer format if the value is <= 181
Return value is the result of the square or -1 if there is an error
The return value is in the interger format

//Define input variable

Define temporary variable

 Number

Result

 Error

Compiling: scl_startup\S7 program(1)\Sources\SCL source(1)
SCL source: SCL source(1)
Block: Square
Block: OB1
Result: 0 errors, 0 warning(s)

Note: If several blocks are programmed in one source, it is possible to compile the blocks

individually, () and to load them to the CPU individually. ()

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming with S7-SCL

 Automation and Drives - SCE

T I A Training Document Page 23 of 34 Module

8. TESTING THE STEP 7 PROGRAM IN THE CPU

The S7-SCL test functions allow for checking a program during its run in the CPU and find possible
errors. Syntax errors are displayed during compilation. Timeouts during program execution are also
indicated by system alarms. Logical programming errors can be determined with the test functions.

8.1 Operating Modes

Scanning test information usually extends the cycle time. In order to be able to influence this time
extension, SCL offers two different operating modes.

Test Mode
In the operating mode ’Test Mode’, the monitoring range is limited only by the performance
capability of the connected CPU. All test functions can be used without restriction. Longer
extensions of the CPU cycle time can occur since, for example, the status of instructions in
programmed loops is ascertained for each run.

Process Mode
In the operating mode ’Process Mode’, the SCL debugger limits the maximum monitoring range in a
way that the cycle duration during the test process does not exceed or only insignificantly exceeds
the real run time.

1. The desired operating mode can be selected in the menu ’Test’. The mode that is actually set is
marked with a dot (→ Test → Mode → Test Mode)

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 24 of 34 Module

8.2 Monitoring the STEP7 Program

The development environment S7-SCL makes two different test functions available.

Continuous monitoring
With this function, you can read out names and current values of variables in the SCL source. During
the test run, the values of the variables and parameters of this area are displayed in a chronological
sequence, and updated cyclically.

Step by step monitoring (only S7-400 CPUs)
With this function, you can set stop points, and then perform a test run in single steps. It is possible
to execute the program algorithm instruction by instruction, for example, and monitor how the values
of the processed variables change.

8.2.1 Continuous Monitoring

When continuously monitoring a program, you can test a group of instructions. This group of
instructions is also called Monitoring Area. If the monitoring area is located in a program part that is
passed in each cycle, the values of the variables can, as a rule, not be recorded from successive
cycles.

Values that changed during the current run, and values that did not change can be differentiated by
color.

The scope of instructions to be tested is limited by the performance capacity of the connected CPU.
Since the SCL instructions of the source code are mapped to a varying number of instructions in the
machine code, the length of the monitoring area is variable. The SCL debugger ascertains and
marks the length if you select the first instruction of the desired monitoring area.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 25 of 34 Module

1. By clicking on the eye glass symbol , the program can be monitored continuously. In the
partial window on the left, the area that is monitored is shown with a gray bar. In the right window,

the values are displayed. (→)

Result

Result
(Nbr.)

Result
Nbr.

(Nbr.) Nbr.

Result Result

Square Square Result (Resul

3. The test function has to be closed in the menu ’Test’. (→ Test → Close Test)

Note: If you deactivate the function ’Monitoring’ with the eye glass symbol , the split window is
saved. The program continues to be open ONLINE and can not be edited. However, you can set,
clear, or edit stop points, and monitor the program sequence step by step.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 26 of 34 Module

8.2.2 Step by Step Monitoring

When testing with stop points, the test is run in individual steps. The program algorithm can be
executed instruction by instruction, and you can monitor how the values of the edited variables
change. The number of stop points depends on the CPU that is connected.
After the stop points are set, you can have the program executed initially up to a stop point. When
the CPU reaches this instruction, it enters the STOP mode, and from there, you can start with step
by step monitoring.

 Allows for activating/deactivating/clearing stop points that were set, and for specifying that
certain stop points are active only in a defined call environment.

 Sets or clears stop points at the current position of the mouse pointer. This menu command
is active only if you are not performing the function "Monitoring" at the moment; that is, if the
menu command Monitor is not marked with a check mark.

 Clears all stop points of the current S7 program. This menu command is active only if you
are not performing the function "Monitoring" at the moment; that is, if the menu command
Monitor is not marked with a check mark.

 Turns on the test mode "Testing with stop points". This menu command is active only if you
are not performing the function "Monitoring" at the moment; that is, if the menu command
Monitor is not marked with a check mark.

 Executes the program up to the next stop point. When this stop point is reached, the CPU
enters the STOP mode.

 Executes the SCL instruction at the current position. After the instruction is executed, the
CPU enters the STOP mode, the insertion point is moved to the next instruction, and the
contents of the variables in the instruction that was edited last are displayed.

 The program is executed up to the current position of the insertion point. The CPU enters
the STOP mode.

 If the block that is called is a block generated by SCL, the menu command Execute Call
causes the block that is called to be opened, and the program stops at the first instruction of
the block. You now can monitor the block step by step with the single step functions. When
the end of the block is reached, the program jumps back to the block that is calling, and
stops in the line following the block call. If the block that is called is a block that is not
generated by SCL, the call is skipped and the program line that follows is marked.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 27 of 34 Module

Sample Exercise: Expanding and Testing

To better illustrate the different possibilities in the test mode, the sample exercise is supplemented.

Three different integers are to be squared and read out. To this end, the function Square in OB1 is
called three times in succession. At each call, the input parameters are to be adapted to the
respective input word. The output of the different results is to be placed on different output words.

1. To this end, supplement the symbol table as follows:

IW 0 Input_1 First number to be squared
IW 2 Input_2 Second number to be squared
IW 4 Input_3 Third number to be squared
OW 0 Output_1 Result 1
OW 2 Output_2 Result 2
OW 4 Output_3 Result 3
FC 1 Square Square function

2. The symbol bar for the stop point commands can be inserted in the menu View 'Stop Point Bar’.
This is confirmed with a check mark at the menu option (→ View → Stop Point Bar).

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 28 of 34 Module

3. The additional calls of the function Square are inserted in the SCL source. Then, the program has

to be saved , compiled and checked for syntax errors. After all errors are removed, the

blocks can be loaded to the CPU . (→ → →).

4. Place the mark in the line with the first call of function FC1 and insert a stop point by clicking on

the button . (→)

Note: It is possible to insert several stop points. To this end, mark the desired line and insert an

additional stop point . To clear a stop point that you already set, mark it and then use the same

button .

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 29 of 34 Module

5. Now, step by step monitoring is started by activating the stop points that were set . Click on

 to edit the first instruction and have it displayed in the right partial window. (→ →)

6. You can have the next instruction edited by another click on . (→)

Note: For step by step monitoring, only the values of the instruction that is currently processed is

displayed. Although block calls are executed with the command ’To next instruction’ , they are
not displayed step by step.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 30 of 34 Module

7. A called block can be monitored step by step with the command ’Execute Call’ . The first

instruction is displayed with the function ’To next instruction’ . (→ →).

8. Each additional instruction is processed and displayed with the same function . (→)

Note: If the end of the block is reached and if the command ’To next instruction’ is executed
again, the instruction is edited after the block call of the calling block.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 31 of 34 Module

9. With the command ’Continue’ , the program is executed up to the next stop point. If no stop
point is set when the end of the program is reached, the program cycle is restarted and processed

up to the next stop point. (→)

10. Now, mark the start of the line with the third call of the function Square. With the command ’Up

to the Marking’ , the program is processed up to this instruction. With ’To next instruction’

, the instruction can be processed and displayed. (→ →)

 Mark here!

Note: The command ’Up to the marking’ can only be used within the block. If the program is
to be processed to a position in another block, this has to be done with a stop point and the

command ’Continue’ .

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 32 of 34 Module

11. Again mark the start of the line with the third call of the function Square. Insert an additional stop

point at this location. (→)

Mark here!

12. With ’Edit stop points’ , stop points can be activated, deactivated or cleared. Deactivate

the fist stop point in OB1. (→ → Deactivate → OK)

Deactivate
here!

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 33 of 34 Module

13. Now, select the command ’Continue’ . The program will be processed to the next active

stop point. With the function ’To next instruction’ , the values of the current line are displayed.

(→ →)

Note: With the function ’Continue’ , the program is executed up to and including the marked

line. However, the display is not updated. It is updated with the function ’To next instruction’ .

14. If you are switching off and clearing the stop points, you are still in the test mode. The

partial window for the current values is still displayed. (→ →)

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

 Automation and Drives - SCE

T I A Training Document Page 34 of 34 Module

15. The test function has to be closed in the menu ’Test’. (→ Test → Close Test)

Note: As long as the test functions are active, no changes can be made in the text editor. Only after
the test is completed is it possible to edit the SCL source again.

Preface Notes Installation Development Environment Sample Exercise Project Program Testing

 C2
Issued: 02/2008 High Level Language Programming withS7-SCL

	4 THE DEVELOPMENT ENVIRONMENT S7-SCL

