[image: image27.wmf]

 Automation– and Drive Technology- SCE

[image: image27.wmf]

Training document for the company-wide

automation solution

Totally Integrated Automation (T I A)

MODULE B5

Structured programming with function blocks
This document was provided by Siemens A&D SCE (automation and drive technology, Siemens A&D Cooperates with Education) for training purposes. Siemens does not make any type of guarantee regarding its contents.

The passing on or duplication of this document, including the use and report of its contents, is only permitted within public and training facilities.

Exceptions require written permission by Siemens A&D SCE (Mr. Knust: E-Mail: michael.knust@hvr.siemens.de). Offences are subject to possible payment for damages caused. All rights are reserved for translation and any case of patenting or GM entry.

We thank the company Michael Dziallas Engineering and the instructors of vocational schools as well as further persons for the support with the production of the document.

PAGE:

1.
Forward

4

2. Notes for Structured Programming with FCs and FBs

6

3.
Generating Functions Blocks with Variable Declarations

8

The following symbols stand for the specified modules:

[image: image28.wmf]

Information

[image: image29.png]

[image: image30.png]

Programming

[image: image31.png]

Example exercise

[image: image32.jpg]

Notes

1.
FOrWARD

The Module B5 is assigned content wise to Additional functions of STEP 7- Programming.

[image: image33.jpg]

[image: image34.jpg]

[image: image35.jpg]

[image: image36.jpg]

[image: image37.jpg]

[image: image38.jpg]

[image: image39.jpg]

[image: image40.jpg]

[image: image41.jpg]

[image: image42.jpg]

[image: image43.jpg]

Learning goal:

In this module, the reader should learn how a function block with internal variables is generated for structured programming.

(
Generating a function block

(
Defining internal variables

(
Programming internal variables in a function block

(
Calling and parameterizing of a function block in OB1

Requirements:
For the successful use of this module, the following knowledge is assumed:

(
Knowledge in the use of Windows 95/98/2000/ME/NT4.0

(
Basics of PLC- Programming with STEP 7 (e.g. Module A3 - ‘Startup’

PLC programming with STEP 7)

(
Basics to structured programming (e.g. Appendix I - Basics to PLC –Programming with
SIMATIC S7-300)

Required hardware and software
1
PC, Operating system Windows 95/98/2000/ME/NT4.0 with

· Minimal: 133MHz and 64MB RAM, approx. 65 MB free hard disk space

· Optimal: 500MHz and 128MB RAM, approx. 65 MB free hard disk space

2
Software STEP 7 V 5.x

3
MPI- Interface for the PC (e.g. PC- Adapter)

4
PLC SIMATIC S7-300 with at least one digital in- and output module. The inputs must be lead

through a functional unit.

Example configuration:

· Power supply: PS 307 2A

· CPU: CPU 314

· Digital input: DI 16x DC24V

· Digital output: DO 16x DC24V / 0.5 A

[image: image44.jpg]

[image: image45.jpg]

[image: image46.jpg]

[image: image47.jpg]

[image: image48.jpg]

[image: image49.jpg]

2.
NotEs for structured programming with Fcs and fbs

The program execution is written in blocks in STEP 7. The organization block OB1 is already available.

The program execution describes the interface to the operation system of the CPU and is called automatically from this block and executed cyclically.

By extensive control tasks, one cuts the program into small, manageable and ordered program blocks in functions.

These blocks are then called from the organization block over the block call instructions

(Call xx / UC xx / CC xx). If the block end was realized, the program executes further in the previously called block call.

For structured programming, STEP 7 offers the following:

 · FB (Function block):

The FB has an assigned storage area. If a FB is called, it can be assigned a data block (DB).
From the data in this instance, the DB can be accessed by a call from the FB. A FB can be
assigned different DBs. Further FBs and FCs can also be called over block call instructions in a
function.

· FC (Function):

A FC does not possess an assigned storage area. The local data of a function is lost after the
editing of the function. Further FBs and FCs can be called over block call instructions in a
function.

[image: image50.jpg]

The structure of a program can look as follows:

[image: image1.wmf]Call FB1, DB10

UC FC2

OB = Organization block

FB = Function block

FC = Function

DB = Data block

Instance-DB

Local data only

FB1

BE

BE

OB 1

FC 2

DB 10

FB 1

[image: image51.jpg]

Note:
In order to use the blocks, they must first be generated. There is also a
possibility to program these FCs and FBs in the form of standard blocks under the use
of internal variables. Then any function can be called often, whereas another local
instance DB must access a FB each time.

3.
generating a function block with variable declaration

[image: image52.jpg]

When blocks are generated with STEP 7, the quasi as a “Black-Box“ in any program functions must be programmed under assignment from variables. Therefore the rules apply, that in these blocks, no absolute addressed In/Outputs, memory bits, timers, counters, etc. are allowed to be used. Single variables and constants come here to be assigned.

[image: image53.jpg]

In the following example, a function block with variable declaration is to be provided which contains a band control and additionally another cycle counter.

Therefore the band motor is activated with the button ‘S0‘ and deactivated with the button ‘S1‘.

The traversing program cycles should be counted to a memory bit double word.

The example refers to the displayed addresses:

Inputs:

-
In-Button S0 = I 0.0

-
Out-Button S1 = I 0.1

Outputs:

-
Band motor = Q 4.0

Memory bits:

-
Cycle counter = MD20

[image: image54.jpg]

To create this program example, the following steps must be accomplished(with the production of a hardware configuration):

1. Open SIMATIC Manager with a double click (® SIMATIC Manager).

[image: image2.png]SIMATIC Manager

2.
Create a new project (® File ® New)

[image: image3.png]SIMATIC Manager

CulsN

cul0

Memory Card
ard i

anew project ot a new bray.

[image: image55.jpg]

3.
Generate a new project, allocate the project with a name Testproject_FB

(® Testproject_FB)

[image: image4.png]D=]

Name Storage path

‘Abschervorichtung C:\Siemens\Step7\G 7prahABSCHERY.
Cutfing apparalus C:\Giemens\Step?\S7prol\Culting_2
Cutfing apparalus C\Giemens\Step7\S7pro Culting_
Cuing apparalus C\Giemens\Step7\S7pro Cultest
statip C\Siemens\StepT\STpro\STARTUP
Testproight DB C:\Giemens\Step?\S7pralTestprol

Name: Type:
[Testproject FEl

Project

Storage location (paf:
[C\Siemens\Step7\57proi

Browse.

4.
Insert a new S7-Program (® Insert ® Program ® S7-Program).

[image: image5.png]) SIMAT

Fie Edt [PLC View Oplons Window Help

S

| [<Worer>

Subnet

S
El sek
7 Bofiae

EiripTesie
Efeme|Eouce.

Inserts 57 Program a the cursor posiion.

2M7 Program

SPizaren
B s ToroiTostpr_1

L

[image: image56.jpg]

5.
Highlight the folder Blocks ((Blocks).

[image: image6.png]IMATIC Manager - Testproje
Fle Edt lnset PLC View Oplons Window Help

D|8slew % (e[sl [2

[_[CIx]

& [crer EMEEE]

[_[OIx]

Testpiopeol_FB
£ & 57 Progan(1)
@ Sources
=100]

Press F1 to get Help. e 7

6.
Insert a Function block (® Insert ® S7 Block ® Function block).

[image: image7.png]] SIMATIC Manager - Testproiect_FB [[=] B3
Fie Edt MY PLC View Qptions Window Help

[al=]] | [= 2 | [<HaFier> 19| %8la)| x|

S \Step\SZpro\Testor 1 HEE
SR [eom

= TN 1 Orgerization Block
3Function
4DataBlock
EDataType
§Vaisble Table

Insets Function Block at the cursor poston.

7.
Enter the name of FB1 for the FB and click on OK (® FB1 ® OK).

[image: image8.png]Func

Proper

n Block

Gererd-Pat T | Generl- 2] Cals | Atiutes |

Nae:
‘Symbolc Name:

Symbol Comment:

¥ Mulile Instance Capabilty

Created in Language: STL B
Projct pa I
S s [e Te T
e e

Do o 2357202 0450
Lotmodtc 2357202 04505 2357202 0450
Camment =

o el | He

8.
Open function block FB1 with a double click. (® FB1)

[image: image9.png]IMATIC Manager - Testproje
Fle Edt lnset PLC View Oplons Window Help

N EEREET

[_[CIx]

T RET—- 1 L)

[_[OIx]

Testprofect_FB

1@ 57 Prograni) E E
@ Souces oot -
/23 Blocks e)

Press F1 to get Help. e 7

9.
With LAD, STL, FBD: Program blocks, you now have an editor which gives you the possibility to edit your functions.

In addition, the variables should be defined and specified in the variable declarations table, which is displayed in the FB1.

These variables are type ‘in’, ’out’, ’in_out’, ’stat’ and ’temp’.

Input parameters (IN) only in FBs, FCs, SFBs and SFCs

With help of the input parameters, data is assigned for the processing of the block.

Output parameters (OUT) only in FBs, FCs, SFBs and SFCs

With the output parameters, the results are assigned to the called block.

In/Out parameters (IN_OUT) only in FBs, FCs, SFBs and SFCs

With the in/out parameters, data is assigned to the called block, processed and files the results from the called block into the same variables.

Statistical data (STAT) only in FBs and SFBs

Statistical data is the local data of a function block that is saved in an instance data block and therefore remains preserved until the next processing of the function block.

Temporary data (TEMP) in all blocks

Temporary data is local data of a block that is filed during the processing of a block into the local data stack (L-Stack) and is no longer available after processing.

Note:
Here the difference between FB/SFB and FC/SFC is stated. In a FC, there are no

statistical variables (stat) to regulate because there is no memory for the contents of the

variable contents after the processing of the FC. In the FB, these statistical variables

are buffer stored in the corresponding local instance DB until the next processing of the

FB.

Out of this principle, only the FB is suited for the creation of programs in which data like
e.g. step memory bits over more program cycles should remain stored away.

This stipulation of the variables follows by the first name given. The data type is specified and an optional initial value and comment are entered. This example appears as follows:

[image: image10.png]EHLAD/STLIFBD - [DB10 - Testprojekt_FBAS7-Programm(1)]
o Fle Edt [met PLC Debug View Opion: Window Hep

[-[C[x]
B

E.J_;I_F_IIJ_IELEJ:EM_HE&_@JL[_]

Press 1 toget Heb.

Note:
In the declaration, one of each chosen stationary variable type is displayed.

Also displayed by FCs are variables from type ‘in’, ’out’, ’in_out’ and ’temp’ and by
FBs, variables from type ‘in’, ’out’, ’in_out’, ’stat’ and ’temp’. If a further variable from
a particular type is required, then one must click on the variable row in the last column
(Column), and then hit <Enter>. Then an empty row with this variable type
appears.

Data in a data block must be determined through data types.

The following standard- data types are defined in the S7 below :

	Type and

description
	Size

in Bits
	Format-options
	Range and number notation

(lowest to highest value)
	Example

	BOOL (Bit)
	1
	Boolean-Text
	TRUE/FALSE
	TRUE

	BYTE (Byte)
	8
	Hexadecimal number
	B#16#0 to B#16#FF
	B#16#10

	WORD (Word)
	16
	Binary number
	2#0 to 2#1111_1111_1111_1111
	2#0001_0000_0000_0000

	
	
	Hexadecimal number
	W#16#0 to W#16#FFFF
	W#16#1000

	
	
	BCD
	C#0 to C#999
	C#998

	
	
	Decimal number unsigned
	B#(0,0) to B#(255,255)
	B#(10,20)

	DWORD (Double word)
	32
	Binary number
	2#0 to 2#1111_1111_1111_1111_1111_1111_1111_1111
	2#1000_0001_0001_1000_1011_1011_0111_1111

	
	
	Hexadecimal number
	DW#16#0000_0000 to DW#16#FFFF_FFFF
	DW#16#00A2_1234

	
	
	Decimal number unsigned
	B#(0,0,0,0) to B#(255,255,255,255)
	B#(1,14,100,120)

	INT (Integer)
	16
	Decimal number signed
	-32768 to 32767
	1

	DINT (Int,32 bit)
	32
	Decimal number signed
	L#-2147483648 to L#2147483647
	L#1

	REAL (Floating-point number)
	32
	IEEE floating-point number
	Upper limit: +/-3.402823e+38
Lower limit: +/-1.175495e-38
	1.234567e+13

	S5TIME
(Simatic-Time)
	16
	S7-Time in steps of 10 ms
	S5T#0H_0M_0S_10MS to S5T#2H_46M_30S_0MS and
S5T#0H_0M_0S_0MS
	S5T#0H_1M_0S_0MS
S5TIME#1H_1M_0S_0MS

	TIME
(IEC-Date)
	32
	IEC-Time in steps from 1ms, integer signed
	-T#24D_20H_31M_23S_648MS to
T#24D_20H_31M_23S_647MS
	T#0D_1H_1M_0S_0MS
TIME#0D_1H_1M_0S_0MS

	DATE
(IEC-Date)
	16
	IEC-Date in steps of 1 Tag
	D#1990-1-1 to D#2168-12-31
	DATE#1994-3-15

	TIME_OF_DAY (Time)
	32
	Time in steps of 1ms
	TOD#0:0:0.0 to TOD#23:59:59.999
	TIME_OF_DAY#1:10:3.3

	CHAR (Character)
	8
	ASCII-Characters
	 ´A´, ´B´ etc.
	´B´

10.
Now the program can be entered by the use of variable names. (Variables are recognized with the symbol #’). These variables can be seen in the following example in STL. The function block FB1 should be saved [image: image11.jpg]

 and downloaded into the CPU [image: image12.jpg]

. The mode switch of the CPU must be on STOP! (([image: image13.jpg]

 ([image: image14.jpg]

)

 [image: image15.png]{5 LAD/STL/FBD - [FB1 -- Testprojekt_FBAS7-Programm(1)] [-[o[x]
© e Edt e PLC Debug View Optons Window Heb ~i8/x|

| Dissls-[@] 8| slml@] o~ eslal [5 o] 1< B 22l AH -0l [W]

R —— B
[Comment:

Memarybit band control

A On
5 b
A o
R A

Hetwork 2 : Triggerband motor

[Comment:

#Mb1
#hotoy

Hetwork 31 Cycle counter increases the varkdle #Cyele by 1 each eyrele

[Comment:
L #Cylke
Lo
D
T #Cyk

Loy o

Press F to get Help. [9 foffine [Bbs | =i

11.
In SIMATIC Manager, only the OB1 is opened in order to program the call of the FB1

((OB1).

[image: image16.png]L] SIMATIC Manager - [Testproie ens\Step7\S 7proi\Testpr_1] [-CIx]
& Fle Edt Inset PLC View Options Window Help 18| x|

D|=(82]#| * 2|2 sl [= 25| Sl AT —1

Testpiopel_FB
£ & 57 Progan(1)
@ Sources
/23 Blocks

Press F1 to get Help. 7

12.
Accept the setting with a click on OK ((OK).

[image: image17.png]Nae:

‘Symbolic Name: |

Symbol Comment [

Created in Language: STL B

Projct pa I

i R e e o o

oo noce

R aumsra0n2 102140

Lot i w2t o33 Tsm2rass oest12

Comment i Progtam Sweep (Cyeh =
o

o el | He

13.
With ‘LAD, STL, FBD: Program blocks’, you now have an editor that gives you the possibility to generate your OB1. The FB1 should be called together with it’s associated instance DB (also called local DB) with the following instruction line.

CALL FB1,DB10 <Enter>

Therefore, the instance DB (DB10) can automatically be generated when the question is answered with Yes ((Call FB1,DB10 (Yes).

[image: image18.png][LAD/STL/FBD - 0B1 (o]

File Edt Inset PLC Debug Yiew Options Window Help
Dl(e-(@| & (@] ol il [
= R

Call FBL,DBL0

LAD/STL/FBD (30:150)

The instance data black DB 10 does nt evst. Do you
want 1o generate 7

Mo Detas. Help
Press F1 1o get el [9 lofine [Abs Pwiln

14. Then all variables from type ‘in’, ‘out’ and ‘in_out’ are displayed, so that these variables can be
assigned actual parameters (e.g.: I 0.0, MW2 etc ...).

 [image: image19.png]b Title:
[Comnents
AL 1, 08I0
m
oue:
Hotor

Eyele:

15.
In our example, the allocation follows as shown. If the allocation is as follows, the organization block OB1 can be saved [image: image20.jpg]

 and downloaded [image: image21.jpg]

 . The mode switch of the CPU must be on STOP! (([image: image22.jpg]

 ([image: image23.jpg]

)

 [image: image24.png]{iLAD/STL/FBD - 0B1 [-1o[x]
File Edt Inset PLC Debug Yiew Options Window Help

Dl(e-(@| & (@] ol il [
R E

Press Fi to get Help. [e [Abs Nwiln

Note:
On this type, the FB1 can be called several times between the indication of different data

blocks and in/output addresses. Thus it represents a standard block for this

special setting of tasks.

16.
Now in ‘SIMATIC Manager’, the instance DB (local DB) ‘DB10’ is chosen and downloaded into the CPU [image: image25.jpg]

. The mode switch of the CPU must be on STOP!((DB10 ([image: image26.jpg]

)

17. By switching the mode switch to RUN the program is started. The motor switches on when switch I0.0 is activated. It is switched off, as the switch I0.1 is activated. In the memory bit MD20, how often the FB1 from the OB1 is called, is taken into account. The memory bits get a feeling for the cycle time of the OB1. This happens with a high frequency, since the program cycle is very short in the OB1.

� EMBED CorelDraw.Graphic.7 ���3 PC Adapter

�

2 STEP 7

�

1 PC

�

4 SIMATIC S7-300

IT- Communication

with SIMATIC S7

1- 2 days E modules

Industrial field bus

systems

2- 3 days D modules

Process

visualization

2- 3 days F modules

Sequencer

programming

2- 3 days C modules C

Additional functions of

STEP 7- Programming

2- 3 days B Modules

Initial value to which the data type must be compatible

(optional).

�

�

�

�

�

�

�

�

�

Comment to

documentation

(optional).

�

Declaration-

Column specifies the type of variable.

Basics of

STEP 7- Programming

2 - 3 days A modules

�

�

�

�

�

�

�

In the program, the variable is accessed directly with ‘#’ recognized symbol name.

�

�

�

�

�

�

�

�

The absolute address is created automatically from STEP 7.

The address format is BYTE, BIT.

Symbolic name is referenced with the absolute address. Over this address, the variable can be accessed.

Chosen data type (see below) for your data element.

T I A Training document
 Page 3 of 20
Module B5

Last revision: 02/2002
 Structured programming with function blocks

_1041864302.unknown

_1094296923.doc
Call FB1, DB10

UC FC2

OB = Organization block

FB = Function block

FC = Function

DB = Data block

Instance-DB Local data only FB1

BE

BE

OB 1

FC 2

DB 10

FB 1

_998837923.bin

